{"title":"不对称地形产生的内波","authors":"K. Hakes, J. Crockett","doi":"10.1016/j.expthermflusci.2024.111240","DOIUrl":null,"url":null,"abstract":"<div><p>Previous experimental and theoretical research on tidally generated internal waves over oceanic topography has often used symmetric topographic profiles. However, due to the complex nature of real ocean topography, the effect of asymmetry cannot be overlooked. Studies have shown that topographic complexities, including asymmetry, can have a significant impact on internal wave generation, but topographic asymmetry has not yet been explored in a systematic manner. This work presents a comparison of tidally generated internal waves from nine different two-dimensional asymmetric topographies, consisting of a steeper Gaussian curve on one side, and a wider Gaussian curve on the other. The amplitude of the wider curve varies from 60% of the steeper curve to its equivalent. Two oscillation frequencies are tested. Kinetic energy density in tidally generated internal waves on each side of the topography is compared qualitatively and quantitatively, in both physical and Fourier space. When compared to similar symmetric topographies, waves generated by the asymmetric topographies varied distinctly in both magnitude and wavenumber distribution of kinetic energy density. Waves on the relatively steep side of the topography contain up to 50% more kinetic energy than on the wider side. However, there is very little kinetic energy at the higher wavenumbers associated with the steeper topography. Instead, the internal wavefield is dominated by lower wavenumbers, 50%–90% of the kinetic energy density is contained in wavelengths corresponding to the wider side of the topography. Decreasing the amplitude of the wider curve does not make an appreciable difference in the kinetic energy density spectrum. Thus, the differences quantified here are due solely to changing slope and show the effect which relatively slight asymmetry has on internal wave generation.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"157 ","pages":"Article 111240"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal waves generated from asymmetric topographies\",\"authors\":\"K. Hakes, J. Crockett\",\"doi\":\"10.1016/j.expthermflusci.2024.111240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previous experimental and theoretical research on tidally generated internal waves over oceanic topography has often used symmetric topographic profiles. However, due to the complex nature of real ocean topography, the effect of asymmetry cannot be overlooked. Studies have shown that topographic complexities, including asymmetry, can have a significant impact on internal wave generation, but topographic asymmetry has not yet been explored in a systematic manner. This work presents a comparison of tidally generated internal waves from nine different two-dimensional asymmetric topographies, consisting of a steeper Gaussian curve on one side, and a wider Gaussian curve on the other. The amplitude of the wider curve varies from 60% of the steeper curve to its equivalent. Two oscillation frequencies are tested. Kinetic energy density in tidally generated internal waves on each side of the topography is compared qualitatively and quantitatively, in both physical and Fourier space. When compared to similar symmetric topographies, waves generated by the asymmetric topographies varied distinctly in both magnitude and wavenumber distribution of kinetic energy density. Waves on the relatively steep side of the topography contain up to 50% more kinetic energy than on the wider side. However, there is very little kinetic energy at the higher wavenumbers associated with the steeper topography. Instead, the internal wavefield is dominated by lower wavenumbers, 50%–90% of the kinetic energy density is contained in wavelengths corresponding to the wider side of the topography. Decreasing the amplitude of the wider curve does not make an appreciable difference in the kinetic energy density spectrum. Thus, the differences quantified here are due solely to changing slope and show the effect which relatively slight asymmetry has on internal wave generation.</p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"157 \",\"pages\":\"Article 111240\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001092\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001092","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Internal waves generated from asymmetric topographies
Previous experimental and theoretical research on tidally generated internal waves over oceanic topography has often used symmetric topographic profiles. However, due to the complex nature of real ocean topography, the effect of asymmetry cannot be overlooked. Studies have shown that topographic complexities, including asymmetry, can have a significant impact on internal wave generation, but topographic asymmetry has not yet been explored in a systematic manner. This work presents a comparison of tidally generated internal waves from nine different two-dimensional asymmetric topographies, consisting of a steeper Gaussian curve on one side, and a wider Gaussian curve on the other. The amplitude of the wider curve varies from 60% of the steeper curve to its equivalent. Two oscillation frequencies are tested. Kinetic energy density in tidally generated internal waves on each side of the topography is compared qualitatively and quantitatively, in both physical and Fourier space. When compared to similar symmetric topographies, waves generated by the asymmetric topographies varied distinctly in both magnitude and wavenumber distribution of kinetic energy density. Waves on the relatively steep side of the topography contain up to 50% more kinetic energy than on the wider side. However, there is very little kinetic energy at the higher wavenumbers associated with the steeper topography. Instead, the internal wavefield is dominated by lower wavenumbers, 50%–90% of the kinetic energy density is contained in wavelengths corresponding to the wider side of the topography. Decreasing the amplitude of the wider curve does not make an appreciable difference in the kinetic energy density spectrum. Thus, the differences quantified here are due solely to changing slope and show the effect which relatively slight asymmetry has on internal wave generation.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.