10MAG/LDAO 反向胶束的表征:了解蛋白质封装的多功能性

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Crystal I. Stackhouse , Kali N. Pierson , Courtney L. Labrecque , Cara Mawson , Joshua Berg , Brian Fuglestad , Nathaniel V. Nucci
{"title":"10MAG/LDAO 反向胶束的表征:了解蛋白质封装的多功能性","authors":"Crystal I. Stackhouse ,&nbsp;Kali N. Pierson ,&nbsp;Courtney L. Labrecque ,&nbsp;Cara Mawson ,&nbsp;Joshua Berg ,&nbsp;Brian Fuglestad ,&nbsp;Nathaniel V. Nucci","doi":"10.1016/j.bpc.2024.107269","DOIUrl":null,"url":null,"abstract":"<div><p>Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-<em>rac</em>-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (<em>W</em><sub><em>0</em></sub>, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins – cytochrome <em>c</em>, myoglobin, and flavodoxin – in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as <em>W</em><sub><em>0</em></sub> was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030146222400098X/pdfft?md5=a46e72d8e11409254904eba31e299c0a&pid=1-s2.0-S030146222400098X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation\",\"authors\":\"Crystal I. Stackhouse ,&nbsp;Kali N. Pierson ,&nbsp;Courtney L. Labrecque ,&nbsp;Cara Mawson ,&nbsp;Joshua Berg ,&nbsp;Brian Fuglestad ,&nbsp;Nathaniel V. Nucci\",\"doi\":\"10.1016/j.bpc.2024.107269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-<em>rac</em>-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (<em>W</em><sub><em>0</em></sub>, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins – cytochrome <em>c</em>, myoglobin, and flavodoxin – in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as <em>W</em><sub><em>0</em></sub> was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.</p></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S030146222400098X/pdfft?md5=a46e72d8e11409254904eba31e299c0a&pid=1-s2.0-S030146222400098X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030146222400098X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030146222400098X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

反向胶束(RM)是一种自发组织的纳米气泡,由有机溶剂、表面活性剂和水相组成,可以封装生物大分子,用于各种生物物理研究。与其他 RM 系统不同,1-癸酰-rac-甘油(10MAG)和月桂基二甲胺-N-氧化物(LDAO)表面活性剂系统已被证明比其他 RM 混合物具有更高的稳定性,而且对水负载(W0,由水与表面活性剂的比例定义)几乎不敏感。我们将细胞色素 c、肌红蛋白和黄独素这三种模型蛋白质封装在 10MAG/LDAO RMs 中,并采用多种实验方法来表征该系统的行为,从而研究了这一独特特性。我们发现,这种表面活性剂系统与传统的球形单分散 RM 群体模型有很大不同。我们发现,10MAG/LDAO RM 在所有条件下都是扁平椭圆体,随着 W0 的增加,表面活性剂重新分布,形成了更多数量越来越多的球形椭圆体颗粒,并汇集了更多类似块状的水。蛋白质对混合物的热力学产生了明显的影响,在其最佳RM尺寸上进行封装,并促使不含蛋白质的RM尺寸相应增大。这些发现为今后开发类似的可塑性封装系统提供了信息,并为应用 10MAG/LDAO RMs 分析纳米尺度约束下的生物和化学过程奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation

Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation

Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-rac-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (W0, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins – cytochrome c, myoglobin, and flavodoxin – in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as W0 was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信