{"title":"探索阳极材料对 X 射线光子通量和特性的影响:蒙特卡罗模拟研究","authors":"Hassan Ouhadda , Mustapha Zerfaoui , Karim Bahhous , Yassine Oulhouq , Abdessamad Didi , Abdeslem Rrhioua , Dikra Bakari","doi":"10.1016/j.nucana.2024.100112","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the critical significance of anode material selection in defining the energy spectrum and properties of X-ray photons in medical physics applications. Using the GATE platform and Monte Carlo simulations, a direct relationship between anode material atomic number and photon fluence is demonstrated. As the atomic number increases from Z = 29 (Copper) to Z = 74 (Tungsten), photon fluence rises by 62 %, indicating a substantial impact on X-ray production. Furthermore, the X-ray spectrum is affected by this material-driven changes, revealing a noticeable shift towards higher energy values: the mean energy of the continuous spectrum rises from 46.97 keV for Copper to 49.0 keV for Tungsten. The thermal properties of the material affect the temperature increase at the focal point. Rhodium and Molybdenum have a higher temperature rise than Copper (Cu) and Tungsten (W), because Cu and W have a greater thermal diffusion compared to other materials. These findings underscore the significance of anode material choice in optimizing X-ray systems which may enhance diagnostic accuracy and efficiency in diverse applications.</p></div>","PeriodicalId":100965,"journal":{"name":"Nuclear Analysis","volume":"3 2","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773183924000120/pdfft?md5=9a7db82a57fbdb3212adfe5d2e27cfe0&pid=1-s2.0-S2773183924000120-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the impact of anode material on X-ray photon fluence and characteristics: A Monte Carlo simulation study\",\"authors\":\"Hassan Ouhadda , Mustapha Zerfaoui , Karim Bahhous , Yassine Oulhouq , Abdessamad Didi , Abdeslem Rrhioua , Dikra Bakari\",\"doi\":\"10.1016/j.nucana.2024.100112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the critical significance of anode material selection in defining the energy spectrum and properties of X-ray photons in medical physics applications. Using the GATE platform and Monte Carlo simulations, a direct relationship between anode material atomic number and photon fluence is demonstrated. As the atomic number increases from Z = 29 (Copper) to Z = 74 (Tungsten), photon fluence rises by 62 %, indicating a substantial impact on X-ray production. Furthermore, the X-ray spectrum is affected by this material-driven changes, revealing a noticeable shift towards higher energy values: the mean energy of the continuous spectrum rises from 46.97 keV for Copper to 49.0 keV for Tungsten. The thermal properties of the material affect the temperature increase at the focal point. Rhodium and Molybdenum have a higher temperature rise than Copper (Cu) and Tungsten (W), because Cu and W have a greater thermal diffusion compared to other materials. These findings underscore the significance of anode material choice in optimizing X-ray systems which may enhance diagnostic accuracy and efficiency in diverse applications.</p></div>\",\"PeriodicalId\":100965,\"journal\":{\"name\":\"Nuclear Analysis\",\"volume\":\"3 2\",\"pages\":\"Article 100112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773183924000120/pdfft?md5=9a7db82a57fbdb3212adfe5d2e27cfe0&pid=1-s2.0-S2773183924000120-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773183924000120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773183924000120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了阳极材料的选择在确定医学物理应用中 X 射线光子的能谱和特性方面的重要意义。利用 GATE 平台和蒙特卡罗模拟,证明了阳极材料原子序数与光子通量之间的直接关系。当原子序数从 Z = 29(铜)增加到 Z = 74(钨)时,光子通量增加了 62%,表明这对 X 射线的产生有重大影响。此外,X 射线光谱也受到这种材料驱动变化的影响,显示出向高能量值的明显转变:连续光谱的平均能量从铜的 46.97 keV 上升到钨的 49.0 keV。材料的热特性会影响焦点处的温度升高。铑和钼的温升比铜(Cu)和钨(W)高,因为与其他材料相比,铜和钨的热扩散能力更强。这些发现强调了选择阳极材料对优化 X 射线系统的重要意义,可提高各种应用中的诊断准确性和效率。
Exploring the impact of anode material on X-ray photon fluence and characteristics: A Monte Carlo simulation study
This study investigates the critical significance of anode material selection in defining the energy spectrum and properties of X-ray photons in medical physics applications. Using the GATE platform and Monte Carlo simulations, a direct relationship between anode material atomic number and photon fluence is demonstrated. As the atomic number increases from Z = 29 (Copper) to Z = 74 (Tungsten), photon fluence rises by 62 %, indicating a substantial impact on X-ray production. Furthermore, the X-ray spectrum is affected by this material-driven changes, revealing a noticeable shift towards higher energy values: the mean energy of the continuous spectrum rises from 46.97 keV for Copper to 49.0 keV for Tungsten. The thermal properties of the material affect the temperature increase at the focal point. Rhodium and Molybdenum have a higher temperature rise than Copper (Cu) and Tungsten (W), because Cu and W have a greater thermal diffusion compared to other materials. These findings underscore the significance of anode material choice in optimizing X-ray systems which may enhance diagnostic accuracy and efficiency in diverse applications.