Janick Weberpals, Sudha Raman, Pamela A. Shaw, Hana Lee, Massimiliano Russo, Bradley G. Hammill, S. Toh, John G. Connolly, Kimberly Dandreo, Fang Tian, Wei Liu, Jie Li, José J. Hernández-Muñoz, Robert J. Glynn, R. Desai
{"title":"描述和分析电子健康记录中部分观测到的混杂因素数据的原则性方法","authors":"Janick Weberpals, Sudha Raman, Pamela A. Shaw, Hana Lee, Massimiliano Russo, Bradley G. Hammill, S. Toh, John G. Connolly, Kimberly Dandreo, Fang Tian, Wei Liu, Jie Li, José J. Hernández-Muñoz, Robert J. Glynn, R. Desai","doi":"10.2147/clep.s436131","DOIUrl":null,"url":null,"abstract":"Objective: Partially observed confounder data pose challenges to the statistical analysis of electronic health records (EHR) and systematic assessments of potentially underlying missingness mechanisms are lacking. We aimed to provide a principled approach to empirically characterize missing data processes and investigate performance of analytic methods","PeriodicalId":503946,"journal":{"name":"Clinical Epidemiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Principled Approach to Characterize and Analyze Partially Observed Confounder Data from Electronic Health Records\",\"authors\":\"Janick Weberpals, Sudha Raman, Pamela A. Shaw, Hana Lee, Massimiliano Russo, Bradley G. Hammill, S. Toh, John G. Connolly, Kimberly Dandreo, Fang Tian, Wei Liu, Jie Li, José J. Hernández-Muñoz, Robert J. Glynn, R. Desai\",\"doi\":\"10.2147/clep.s436131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Partially observed confounder data pose challenges to the statistical analysis of electronic health records (EHR) and systematic assessments of potentially underlying missingness mechanisms are lacking. We aimed to provide a principled approach to empirically characterize missing data processes and investigate performance of analytic methods\",\"PeriodicalId\":503946,\"journal\":{\"name\":\"Clinical Epidemiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/clep.s436131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/clep.s436131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Principled Approach to Characterize and Analyze Partially Observed Confounder Data from Electronic Health Records
Objective: Partially observed confounder data pose challenges to the statistical analysis of electronic health records (EHR) and systematic assessments of potentially underlying missingness mechanisms are lacking. We aimed to provide a principled approach to empirically characterize missing data processes and investigate performance of analytic methods