利用振荡变形表面控制气缸尾流

Lingwei Zeng, T. H. New, Hui Tang
{"title":"利用振荡变形表面控制气缸尾流","authors":"Lingwei Zeng, T. H. New, Hui Tang","doi":"10.1063/5.0208868","DOIUrl":null,"url":null,"abstract":"In this study, the wake of a cylinder was actively controlled by the cylinder's oscillatory morphing surface. Experiments were conducted in a closed-loop water channel. A cylinder of diameter 36 mm was placed in 0.09 m/s water flow, resulting in the Reynolds number 3240 and the vortex shedding frequency around 0.5 Hz. The cylinder's morphing surface oscillated at four different frequencies, i.e., 0.5, 1, 2, and 4 Hz. It was found that, compared to the rigid circular cylinder, the cylinder with oscillatory morphing surface can generally produce a smaller vortex formation length, especially at intermediate oscillation frequencies. The shear layers developed from the cylinder transit and roll up earlier due to enhanced flow instabilities. With the highest-frequency oscillations, the shear layer develops into a train of many small vortices that follow the trace of undisturbed shear layer. This study reveals some physical insights into this novel flow control method, which could be useful in future engineering applications.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of cylinder wake using oscillatory morphing surface\",\"authors\":\"Lingwei Zeng, T. H. New, Hui Tang\",\"doi\":\"10.1063/5.0208868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the wake of a cylinder was actively controlled by the cylinder's oscillatory morphing surface. Experiments were conducted in a closed-loop water channel. A cylinder of diameter 36 mm was placed in 0.09 m/s water flow, resulting in the Reynolds number 3240 and the vortex shedding frequency around 0.5 Hz. The cylinder's morphing surface oscillated at four different frequencies, i.e., 0.5, 1, 2, and 4 Hz. It was found that, compared to the rigid circular cylinder, the cylinder with oscillatory morphing surface can generally produce a smaller vortex formation length, especially at intermediate oscillation frequencies. The shear layers developed from the cylinder transit and roll up earlier due to enhanced flow instabilities. With the highest-frequency oscillations, the shear layer develops into a train of many small vortices that follow the trace of undisturbed shear layer. This study reveals some physical insights into this novel flow control method, which could be useful in future engineering applications.\",\"PeriodicalId\":509470,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0208868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0208868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,圆柱体的摆动变形表面主动控制了圆柱体的尾流。实验在闭环水道中进行。将直径为 36 毫米的圆柱体置于流速为 0.09 米/秒的水流中,此时的雷诺数为 3240,涡流脱落频率约为 0.5 赫兹。圆柱体的变形表面以四种不同的频率摆动,即 0.5、1、2 和 4 赫兹。研究发现,与刚性圆筒相比,具有振荡变形表面的圆筒一般能产生较小的涡旋形成长度,尤其是在中间振荡频率时。由于流动不稳定性增强,从圆柱体上形成的剪切层会更早地转移和卷起。在最高频率的振荡中,剪切层会沿着未受扰动的剪切层的轨迹发展成许多小涡流。这项研究揭示了这种新型流动控制方法的一些物理原理,对未来的工程应用很有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of cylinder wake using oscillatory morphing surface
In this study, the wake of a cylinder was actively controlled by the cylinder's oscillatory morphing surface. Experiments were conducted in a closed-loop water channel. A cylinder of diameter 36 mm was placed in 0.09 m/s water flow, resulting in the Reynolds number 3240 and the vortex shedding frequency around 0.5 Hz. The cylinder's morphing surface oscillated at four different frequencies, i.e., 0.5, 1, 2, and 4 Hz. It was found that, compared to the rigid circular cylinder, the cylinder with oscillatory morphing surface can generally produce a smaller vortex formation length, especially at intermediate oscillation frequencies. The shear layers developed from the cylinder transit and roll up earlier due to enhanced flow instabilities. With the highest-frequency oscillations, the shear layer develops into a train of many small vortices that follow the trace of undisturbed shear layer. This study reveals some physical insights into this novel flow control method, which could be useful in future engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信