将环境、社会和公司治理纳入投资组合选择:基于偏好的稳健多标准方法

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Ana Garcia-Bernabeu , Adolfo Hilario-Caballero , Fabio Tardella , David Pla-Santamaria
{"title":"将环境、社会和公司治理纳入投资组合选择:基于偏好的稳健多标准方法","authors":"Ana Garcia-Bernabeu ,&nbsp;Adolfo Hilario-Caballero ,&nbsp;Fabio Tardella ,&nbsp;David Pla-Santamaria","doi":"10.1016/j.orp.2024.100305","DOIUrl":null,"url":null,"abstract":"<div><p>We present a framework for multi-objective optimization where the classical mean–variance portfolio model is extended to integrate the environmental, social and governance (ESG) criteria on the same playing field as risk and return and, at the same time, to reflect the investors’ preferences in the optimal portfolio allocation. To obtain the three–dimensional Pareto front, we apply an efficient multi-objective genetic algorithm, which is based on the concept of <span><math><mi>ɛ</mi></math></span>-dominance. We next address the issue of how to incorporate investors’ preferences to express the relative importance of each objective through a robust weighting scheme in a multicriteria ranking framework. The new proposal has been applied to real data to find optimal portfolios of socially responsible investment funds, and the main conclusion from the empirical tests is that it is possible to provide the investors with a robust solution in the mean–variance–ESG surface according to their preferences.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"12 ","pages":"Article 100305"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214716024000095/pdfft?md5=844c952d89a5e3cb430a5a472d124362&pid=1-s2.0-S2214716024000095-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ESG integration in portfolio selection: A robust preference-based multicriteria approach\",\"authors\":\"Ana Garcia-Bernabeu ,&nbsp;Adolfo Hilario-Caballero ,&nbsp;Fabio Tardella ,&nbsp;David Pla-Santamaria\",\"doi\":\"10.1016/j.orp.2024.100305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a framework for multi-objective optimization where the classical mean–variance portfolio model is extended to integrate the environmental, social and governance (ESG) criteria on the same playing field as risk and return and, at the same time, to reflect the investors’ preferences in the optimal portfolio allocation. To obtain the three–dimensional Pareto front, we apply an efficient multi-objective genetic algorithm, which is based on the concept of <span><math><mi>ɛ</mi></math></span>-dominance. We next address the issue of how to incorporate investors’ preferences to express the relative importance of each objective through a robust weighting scheme in a multicriteria ranking framework. The new proposal has been applied to real data to find optimal portfolios of socially responsible investment funds, and the main conclusion from the empirical tests is that it is possible to provide the investors with a robust solution in the mean–variance–ESG surface according to their preferences.</p></div>\",\"PeriodicalId\":38055,\"journal\":{\"name\":\"Operations Research Perspectives\",\"volume\":\"12 \",\"pages\":\"Article 100305\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214716024000095/pdfft?md5=844c952d89a5e3cb430a5a472d124362&pid=1-s2.0-S2214716024000095-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Perspectives\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214716024000095\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716024000095","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个多目标优化框架,该框架扩展了经典的均值方差投资组合模型,将环境、社会和治理(ESG)标准与风险和收益放在同一起跑线上,同时在最优投资组合分配中反映投资者的偏好。为了获得三维帕累托前沿,我们应用了一种基于ɛ-支配概念的高效多目标遗传算法。接下来,我们要解决的问题是,如何在多标准排序框架中通过稳健的加权方案,结合投资者的偏好来表达每个目标的相对重要性。我们将新建议应用于实际数据,以找到社会责任投资基金的最优投资组合,实证检验得出的主要结论是,可以根据投资者的偏好,在均值-方差-ESG曲面上为其提供稳健的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESG integration in portfolio selection: A robust preference-based multicriteria approach

We present a framework for multi-objective optimization where the classical mean–variance portfolio model is extended to integrate the environmental, social and governance (ESG) criteria on the same playing field as risk and return and, at the same time, to reflect the investors’ preferences in the optimal portfolio allocation. To obtain the three–dimensional Pareto front, we apply an efficient multi-objective genetic algorithm, which is based on the concept of ɛ-dominance. We next address the issue of how to incorporate investors’ preferences to express the relative importance of each objective through a robust weighting scheme in a multicriteria ranking framework. The new proposal has been applied to real data to find optimal portfolios of socially responsible investment funds, and the main conclusion from the empirical tests is that it is possible to provide the investors with a robust solution in the mean–variance–ESG surface according to their preferences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信