B. Wei, Yang Zhang, Jian Hou, Dong Zhao, Yongge Liu, Zhixin Guo, Xiaoke Yang
{"title":"微观孔喉结构对气液相对渗透性的影响:多孔介质构造与孔隙尺度模拟","authors":"B. Wei, Yang Zhang, Jian Hou, Dong Zhao, Yongge Liu, Zhixin Guo, Xiaoke Yang","doi":"10.1063/5.0205591","DOIUrl":null,"url":null,"abstract":"The porous media structure of the oil/gas reservoir changes greatly after long-term development, which subsequently influences the macroscopic relative permeability. To clarify the effects of microscopic pore-throat structure on macroscopic relative permeability, we first proposed a method to generate two-dimensional porous media images with adjustable structure parameters. The method is based on Delaunay triangulation and is similar to the pore-network generation process, which can provide binary images for direct numerical simulation of flow through porous media. Then, we established the single component multiphase Shan–Chen lattice Boltzmann method coupling the real gas equation of state. Finally, we discussed the effect of pore radius, coordination number, pore-throat ratio, pore shape, and wettability on the gas–liquid relative permeability curve using the lattice Boltzmann simulation. This study provides an effective method to generate porous media and explain the mechanism of relative permeability change at the pore scale.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of microscopic pore-throat structure on gas–liquid relative permeability: Porous media construction and pore-scale simulation\",\"authors\":\"B. Wei, Yang Zhang, Jian Hou, Dong Zhao, Yongge Liu, Zhixin Guo, Xiaoke Yang\",\"doi\":\"10.1063/5.0205591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The porous media structure of the oil/gas reservoir changes greatly after long-term development, which subsequently influences the macroscopic relative permeability. To clarify the effects of microscopic pore-throat structure on macroscopic relative permeability, we first proposed a method to generate two-dimensional porous media images with adjustable structure parameters. The method is based on Delaunay triangulation and is similar to the pore-network generation process, which can provide binary images for direct numerical simulation of flow through porous media. Then, we established the single component multiphase Shan–Chen lattice Boltzmann method coupling the real gas equation of state. Finally, we discussed the effect of pore radius, coordination number, pore-throat ratio, pore shape, and wettability on the gas–liquid relative permeability curve using the lattice Boltzmann simulation. This study provides an effective method to generate porous media and explain the mechanism of relative permeability change at the pore scale.\",\"PeriodicalId\":509470,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0205591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0205591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of microscopic pore-throat structure on gas–liquid relative permeability: Porous media construction and pore-scale simulation
The porous media structure of the oil/gas reservoir changes greatly after long-term development, which subsequently influences the macroscopic relative permeability. To clarify the effects of microscopic pore-throat structure on macroscopic relative permeability, we first proposed a method to generate two-dimensional porous media images with adjustable structure parameters. The method is based on Delaunay triangulation and is similar to the pore-network generation process, which can provide binary images for direct numerical simulation of flow through porous media. Then, we established the single component multiphase Shan–Chen lattice Boltzmann method coupling the real gas equation of state. Finally, we discussed the effect of pore radius, coordination number, pore-throat ratio, pore shape, and wettability on the gas–liquid relative permeability curve using the lattice Boltzmann simulation. This study provides an effective method to generate porous media and explain the mechanism of relative permeability change at the pore scale.