内波对西沙群岛海底热结构和湍流混合的影响

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY
Ming-Quan Zhu , Xian-Rong Cen , Sheng-Qi Zhou , Yuan-Zheng Lu , Shuang-Xi Guo , Peng-Qi Huang , Ling Qu
{"title":"内波对西沙群岛海底热结构和湍流混合的影响","authors":"Ming-Quan Zhu ,&nbsp;Xian-Rong Cen ,&nbsp;Sheng-Qi Zhou ,&nbsp;Yuan-Zheng Lu ,&nbsp;Shuang-Xi Guo ,&nbsp;Peng-Qi Huang ,&nbsp;Ling Qu","doi":"10.1016/j.dsr.2024.104327","DOIUrl":null,"url":null,"abstract":"<div><p>Using velocity and high-resolution temperature mooring data from the fore-reef slope of Yongxing Island in the northwest South China Sea (water depth of 69 m), we examine the effects of internal waves on the temporal variations in temperature, bottom mixed layer (BML) and turbulent mixing. The diurnal tide is found to be the dominant tidal force and the baroclinic tide is highly active, which would account for the 11 d abnormal spring-neap cycle in the barotropic tidal current. During the ebb period (tidal elevation decreases), the bottom diurnal baroclinic current transports cold water upslope, resulting in a decrease in temperature, and vice versa during the flood period. The BML thickness <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> widely varies around <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>m</mi></mrow></math></span>, approximately 2% of the water depth. The bottom turbulent mixing is not so active, indicated by the bulk dissipation <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> of 10 <span><math><mrow><mi>mW</mi><mspace></mspace><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> and turbulent diffusivity <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> of <span><math><mrow><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. Both <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> approximate a log-normal distribution, demonstrating strong intermittency. The high-frequency <span><math><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></math></span> internal bores can increase <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> by four times and enhance the turbulent mixing by one order, which should be responsible for the slow cascade of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> <span><math><mrow><mo>(</mo><mo>∼</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> <span><math><mrow><mo>(</mo><mo>∼</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></msup><mo>)</mo></mrow></math></span>. In the downslope phase, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> is about 30% thicker, and turbulent mixing is enhanced by 3 times stronger than those in the upslope phase. It is revealed that under the forcing of internal waves, turbulent mixing corresponds to a thick BML with <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub><mo>∼</mo><msup><mrow><mrow><mo>〈</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>〉</mo></mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></msup></mrow></math></span>, and stratification (<span><math><mi>N</mi></math></span>) has a significantly negative correlation with the development of BML, <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub><mo>∼</mo><msup><mrow><mrow><mo>〈</mo><mi>N</mi><mo>〉</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>8</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"209 ","pages":"Article 104327"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of internal waves on bottom thermal structures and turbulent mixing in the Xisha Islands\",\"authors\":\"Ming-Quan Zhu ,&nbsp;Xian-Rong Cen ,&nbsp;Sheng-Qi Zhou ,&nbsp;Yuan-Zheng Lu ,&nbsp;Shuang-Xi Guo ,&nbsp;Peng-Qi Huang ,&nbsp;Ling Qu\",\"doi\":\"10.1016/j.dsr.2024.104327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using velocity and high-resolution temperature mooring data from the fore-reef slope of Yongxing Island in the northwest South China Sea (water depth of 69 m), we examine the effects of internal waves on the temporal variations in temperature, bottom mixed layer (BML) and turbulent mixing. The diurnal tide is found to be the dominant tidal force and the baroclinic tide is highly active, which would account for the 11 d abnormal spring-neap cycle in the barotropic tidal current. During the ebb period (tidal elevation decreases), the bottom diurnal baroclinic current transports cold water upslope, resulting in a decrease in temperature, and vice versa during the flood period. The BML thickness <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> widely varies around <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>m</mi></mrow></math></span>, approximately 2% of the water depth. The bottom turbulent mixing is not so active, indicated by the bulk dissipation <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> of 10 <span><math><mrow><mi>mW</mi><mspace></mspace><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> and turbulent diffusivity <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> of <span><math><mrow><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. Both <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> approximate a log-normal distribution, demonstrating strong intermittency. The high-frequency <span><math><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></math></span> internal bores can increase <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> by four times and enhance the turbulent mixing by one order, which should be responsible for the slow cascade of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> <span><math><mrow><mo>(</mo><mo>∼</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>ɛ</mi></mrow></msub></math></span> <span><math><mrow><mo>(</mo><mo>∼</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></msup><mo>)</mo></mrow></math></span>. In the downslope phase, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub></math></span> is about 30% thicker, and turbulent mixing is enhanced by 3 times stronger than those in the upslope phase. It is revealed that under the forcing of internal waves, turbulent mixing corresponds to a thick BML with <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub><mo>∼</mo><msup><mrow><mrow><mo>〈</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>〉</mo></mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>25</mn></mrow></msup></mrow></math></span>, and stratification (<span><math><mi>N</mi></math></span>) has a significantly negative correlation with the development of BML, <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi><mi>m</mi><mi>l</mi></mrow></msub><mo>∼</mo><msup><mrow><mrow><mo>〈</mo><mi>N</mi><mo>〉</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>8</mn></mrow></msup></mrow></math></span>.</p></div>\",\"PeriodicalId\":51009,\"journal\":{\"name\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"volume\":\"209 \",\"pages\":\"Article 104327\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967063724000979\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724000979","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

利用南海西北部永兴岛(水深 69 米)前滩斜坡的速度和高分辨率温度锚系数据,研究了内波对温度、海底混合层(BML)和湍流混合的时变影响。研究发现,昼潮是主要的潮汐力,而气压潮非常活跃,这也是气压潮汐流出现 11 天异常春-夏周期的原因。在退潮期(潮位降低),底层日向气压流将冷水输送到上坡,导致温度降低,在洪水期则相反。BML 厚度 Hbml 变化很大,约为 1.5 米,约为水深的 2%。底部湍流混合并不活跃,这体现在体积耗散 Eɛ 为 10 mWm-2,湍流扩散率 κz 为 2×10-4 m2s-1。Hbml 和 Eɛ 都近似于对数正态分布,显示出很强的间歇性。高频(ω)内孔可使 Hbml 增加四倍,湍流混合增强一个数量级,这应该是 Hbml(∼ω-1.5)和 Eɛ (∼ω-1.0)缓慢级联的原因。在下坡阶段,Hbml 厚了约 30%,湍流混合强度是上坡阶段的 3 倍。结果表明,在内波的作用下,湍流混合对应于厚 BML,Hbml∼〈κz〉0.25,分层(N)与 BML 的发展呈显著负相关,Hbml∼〈N〉-1.8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of internal waves on bottom thermal structures and turbulent mixing in the Xisha Islands

Using velocity and high-resolution temperature mooring data from the fore-reef slope of Yongxing Island in the northwest South China Sea (water depth of 69 m), we examine the effects of internal waves on the temporal variations in temperature, bottom mixed layer (BML) and turbulent mixing. The diurnal tide is found to be the dominant tidal force and the baroclinic tide is highly active, which would account for the 11 d abnormal spring-neap cycle in the barotropic tidal current. During the ebb period (tidal elevation decreases), the bottom diurnal baroclinic current transports cold water upslope, resulting in a decrease in temperature, and vice versa during the flood period. The BML thickness Hbml widely varies around 1.5m, approximately 2% of the water depth. The bottom turbulent mixing is not so active, indicated by the bulk dissipation Eɛ of 10 mWm2 and turbulent diffusivity κz of 2×104 m2s1. Both Hbml and Eɛ approximate a log-normal distribution, demonstrating strong intermittency. The high-frequency (ω) internal bores can increase Hbml by four times and enhance the turbulent mixing by one order, which should be responsible for the slow cascade of Hbml (ω1.5) and Eɛ (ω1.0). In the downslope phase, Hbml is about 30% thicker, and turbulent mixing is enhanced by 3 times stronger than those in the upslope phase. It is revealed that under the forcing of internal waves, turbulent mixing corresponds to a thick BML with Hbmlκz0.25, and stratification (N) has a significantly negative correlation with the development of BML, HbmlN1.8.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
4.20%
发文量
144
审稿时长
18.3 weeks
期刊介绍: Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信