在基于晶体塑性的有限元框架中将几何必要位错限制在活动滑移系统中

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Eralp Demir , Alvaro Martinez-Pechero , Chris Hardie , Edmund Tarleton
{"title":"在基于晶体塑性的有限元框架中将几何必要位错限制在活动滑移系统中","authors":"Eralp Demir ,&nbsp;Alvaro Martinez-Pechero ,&nbsp;Chris Hardie ,&nbsp;Edmund Tarleton","doi":"10.1016/j.ijplas.2024.104013","DOIUrl":null,"url":null,"abstract":"<div><p>Strain gradients have been cast in the form of geometrically-necessary dislocations (GND) to relate the length-scale dependence of strength and to determine potential sites for failure initiation. The literature contains various different incompatibility measures, the main ones being: the total form (<span><math><mrow><mo>∇</mo><mo>×</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span>), the rate form for large displacements (<span><math><mrow><mo>∇</mo><mo>×</mo><mspace></mspace><msup><mrow><mover><mrow><mi>γ</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>a</mi></mrow></msup><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mi>a</mi></mrow></msup><mspace></mspace><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span>), and the slip gradient form (<span><math><mrow><mo>∇</mo><mspace></mspace><msup><mrow><mover><mrow><mi>γ</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>a</mi></mrow></msup></mrow></math></span>). Here, these different approaches are compared rigorously for the first time. Obtaining GND densities when using the total form is a rank-deficit linear problem, solved by singular value decomposition (SVD) known as the Least Squares Minimization (L2 method). Alternative methods for finding GND densities such as Karush–Kuhn–Tucker (KKT) optimization are also investigated. Both L2 and KKT methods predict unrealistic GND densities on inactive slip systems leading to excessive strain hardening; even for a single crystal single slip case. Therefore, the restriction of GNDs to the active slip systems by using a threshold based on the total slip is proposed. This restriction reveals relatively consistent results for various single crystal single slip cases including: simple shear, uniaxial tension, and four-point bending. In addition, the small numerical differences in the slip leads to large discrepancies in the flow stress due to error accumulation, even for strain-gradient-free uniaxial tension, hence a threshold for the GND density increment (<span><math><mrow><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> m<sup>−2</sup>) is used in all models to avoid formation of erroneous GND densities. Finally, the proposed method is applied to the evolution of the GND density for a grain inside a polycrystal aggregate that posses a complex stress state. The lowest incompatibility error is obtained by both of the total forms that use the curl of the plastic deformation gradient with the active slip system restriction suggesting them to be the most reliable GND measures.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0749641924001402/pdfft?md5=26948705ce6091cd5dde1e472c686367&pid=1-s2.0-S0749641924001402-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Restraining geometrically-necessary dislocations to the active slip systems in a crystal plasticity-based finite element framework\",\"authors\":\"Eralp Demir ,&nbsp;Alvaro Martinez-Pechero ,&nbsp;Chris Hardie ,&nbsp;Edmund Tarleton\",\"doi\":\"10.1016/j.ijplas.2024.104013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Strain gradients have been cast in the form of geometrically-necessary dislocations (GND) to relate the length-scale dependence of strength and to determine potential sites for failure initiation. The literature contains various different incompatibility measures, the main ones being: the total form (<span><math><mrow><mo>∇</mo><mo>×</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span>), the rate form for large displacements (<span><math><mrow><mo>∇</mo><mo>×</mo><mspace></mspace><msup><mrow><mover><mrow><mi>γ</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>a</mi></mrow></msup><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mi>a</mi></mrow></msup><mspace></mspace><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span>), and the slip gradient form (<span><math><mrow><mo>∇</mo><mspace></mspace><msup><mrow><mover><mrow><mi>γ</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>a</mi></mrow></msup></mrow></math></span>). Here, these different approaches are compared rigorously for the first time. Obtaining GND densities when using the total form is a rank-deficit linear problem, solved by singular value decomposition (SVD) known as the Least Squares Minimization (L2 method). Alternative methods for finding GND densities such as Karush–Kuhn–Tucker (KKT) optimization are also investigated. Both L2 and KKT methods predict unrealistic GND densities on inactive slip systems leading to excessive strain hardening; even for a single crystal single slip case. Therefore, the restriction of GNDs to the active slip systems by using a threshold based on the total slip is proposed. This restriction reveals relatively consistent results for various single crystal single slip cases including: simple shear, uniaxial tension, and four-point bending. In addition, the small numerical differences in the slip leads to large discrepancies in the flow stress due to error accumulation, even for strain-gradient-free uniaxial tension, hence a threshold for the GND density increment (<span><math><mrow><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> m<sup>−2</sup>) is used in all models to avoid formation of erroneous GND densities. Finally, the proposed method is applied to the evolution of the GND density for a grain inside a polycrystal aggregate that posses a complex stress state. The lowest incompatibility error is obtained by both of the total forms that use the curl of the plastic deformation gradient with the active slip system restriction suggesting them to be the most reliable GND measures.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0749641924001402/pdfft?md5=26948705ce6091cd5dde1e472c686367&pid=1-s2.0-S0749641924001402-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924001402\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924001402","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

应变梯度是以几何必要位错(GND)的形式出现的,它关系到强度的长度尺度依赖性,并确定潜在的失效起始点。文献中包含各种不同的不相容度量,主要有:总形式(∇×Fp)、大位移速率形式(∇×γ∠anaFp)和滑移梯度形式(∇γ∠a)。这里首次对这些不同的方法进行了严格的比较。使用总体形式获取 GND 密度是一个秩缺失线性问题,通过奇异值分解(SVD)求解,即最小二乘法(L2 法)。此外,还研究了寻找 GND 密度的其他方法,如 Karush-Kuhn-Tucker (KKT) 优化法。L2 和 KKT 方法都预测了非活动滑移系统上不切实际的 GND 密度,导致过度应变硬化;即使是单晶单滑移情况也是如此。因此,我们提出通过使用基于总滑移的阈值,将 GND 限制在活动滑移系统上。这种限制对各种单晶单滑移情况(包括简单剪切、单轴拉伸和四点弯曲)显示了相对一致的结果。此外,即使在无应变梯度的单轴拉伸情况下,滑移的微小数值差异也会因误差累积而导致流动应力的巨大差异,因此在所有模型中都使用了 GND 密度增量阈值(2×102 m-2),以避免形成错误的 GND 密度。最后,将所提出的方法应用于具有复杂应力状态的多晶体内部晶粒的 GND 密度演变。使用塑性变形梯度卷曲和主动滑移系统限制的两种总形式获得的不相容误差最小,这表明它们是最可靠的 GND 测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restraining geometrically-necessary dislocations to the active slip systems in a crystal plasticity-based finite element framework

Strain gradients have been cast in the form of geometrically-necessary dislocations (GND) to relate the length-scale dependence of strength and to determine potential sites for failure initiation. The literature contains various different incompatibility measures, the main ones being: the total form (×Fp), the rate form for large displacements (×γ̇anaFp), and the slip gradient form (γ̇a). Here, these different approaches are compared rigorously for the first time. Obtaining GND densities when using the total form is a rank-deficit linear problem, solved by singular value decomposition (SVD) known as the Least Squares Minimization (L2 method). Alternative methods for finding GND densities such as Karush–Kuhn–Tucker (KKT) optimization are also investigated. Both L2 and KKT methods predict unrealistic GND densities on inactive slip systems leading to excessive strain hardening; even for a single crystal single slip case. Therefore, the restriction of GNDs to the active slip systems by using a threshold based on the total slip is proposed. This restriction reveals relatively consistent results for various single crystal single slip cases including: simple shear, uniaxial tension, and four-point bending. In addition, the small numerical differences in the slip leads to large discrepancies in the flow stress due to error accumulation, even for strain-gradient-free uniaxial tension, hence a threshold for the GND density increment (2×102 m−2) is used in all models to avoid formation of erroneous GND densities. Finally, the proposed method is applied to the evolution of the GND density for a grain inside a polycrystal aggregate that posses a complex stress state. The lowest incompatibility error is obtained by both of the total forms that use the curl of the plastic deformation gradient with the active slip system restriction suggesting them to be the most reliable GND measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信