{"title":"\"L-stock 方法\"--积极采用切入式铣削的高效率、高切屑稳定性、高精度薄壁铣削策略","authors":"","doi":"10.1016/j.cirp.2024.04.085","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel thin-wall milling strategy named “L-stock method” is proposed. The demand of thin walls has continued its increase due to the strict goal setting of reducing carbon emission. However, its practical machining method has not changed for a long time even though many measures were proposed in the literature. In the proposed method, the directional relationships between the cutting process and the compliant direction are focused, and plunge milling is applied aggressively, which leaves an “L”-shaped stock material, to increase the workpiece stiffness. The synergetic advantages of the proposed method are verified mainly by experiments.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 289-292"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“L-stock method” – High-efficiency high-chatter-stability high-precision thin-wall milling strategy with aggressive use of plunge milling\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a novel thin-wall milling strategy named “L-stock method” is proposed. The demand of thin walls has continued its increase due to the strict goal setting of reducing carbon emission. However, its practical machining method has not changed for a long time even though many measures were proposed in the literature. In the proposed method, the directional relationships between the cutting process and the compliant direction are focused, and plunge milling is applied aggressively, which leaves an “L”-shaped stock material, to increase the workpiece stiffness. The synergetic advantages of the proposed method are verified mainly by experiments.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 289-292\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624001033\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624001033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
“L-stock method” – High-efficiency high-chatter-stability high-precision thin-wall milling strategy with aggressive use of plunge milling
In this paper, a novel thin-wall milling strategy named “L-stock method” is proposed. The demand of thin walls has continued its increase due to the strict goal setting of reducing carbon emission. However, its practical machining method has not changed for a long time even though many measures were proposed in the literature. In the proposed method, the directional relationships between the cutting process and the compliant direction are focused, and plunge milling is applied aggressively, which leaves an “L”-shaped stock material, to increase the workpiece stiffness. The synergetic advantages of the proposed method are verified mainly by experiments.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.