基于深度学习的跟踪重建和μ介子 g-2 实验中的磁场测量研究

Q4 Physics and Astronomy
{"title":"基于深度学习的跟踪重建和μ介子 g-2 实验中的磁场测量研究","authors":"","doi":"10.1016/j.nuclphysbps.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The Run1 result of the Fermilab muon g-2 experiment have shown a 4.2 standard deviation between the experimental measurement and theoretical prediction of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span>, strongly indicating a new physics signal. The Fermilab experiment already accumulated 21 times more data compared to the BNL experiment. The J-PARC muon g-2 experiment will collect 3.5 times the statistics compared to Fermilab. With the increases in the collected data volume, and limited by the speed and accuracy, the existing tracking reconstruction and magnetic field measurement method may not fully satisfy the requirement of the experiment. The breakthrough of the deep learning inspires new analysis method in the muon g-2 experiment. In this proceeding, we will present some preliminary research on the tracking reconstruction based on Recurrent Neural Network (RNN), Graph Neural Network (GNN) and the magnetic field measurement based on Physics Informed Neural Network (PINN). The preliminary results show that the deep learning method has enormous potential in these topics.</p></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"345 ","pages":"Pages 18-21"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning based tracking reconstruction and magnetic field measurement research in the muon g-2 experiment\",\"authors\":\"\",\"doi\":\"10.1016/j.nuclphysbps.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Run1 result of the Fermilab muon g-2 experiment have shown a 4.2 standard deviation between the experimental measurement and theoretical prediction of <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span>, strongly indicating a new physics signal. The Fermilab experiment already accumulated 21 times more data compared to the BNL experiment. The J-PARC muon g-2 experiment will collect 3.5 times the statistics compared to Fermilab. With the increases in the collected data volume, and limited by the speed and accuracy, the existing tracking reconstruction and magnetic field measurement method may not fully satisfy the requirement of the experiment. The breakthrough of the deep learning inspires new analysis method in the muon g-2 experiment. In this proceeding, we will present some preliminary research on the tracking reconstruction based on Recurrent Neural Network (RNN), Graph Neural Network (GNN) and the magnetic field measurement based on Physics Informed Neural Network (PINN). The preliminary results show that the deep learning method has enormous potential in these topics.</p></div>\",\"PeriodicalId\":37968,\"journal\":{\"name\":\"Nuclear and Particle Physics Proceedings\",\"volume\":\"345 \",\"pages\":\"Pages 18-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear and Particle Physics Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405601424000634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear and Particle Physics Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405601424000634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

费米实验室μ介子g-2实验的Run1结果显示,aμ的实验测量值与理论预测值之间存在4.2个标准偏差,强烈显示出一个新的物理信号。费米实验室实验积累的数据已经是 BNL 实验的 21 倍。J-PARC µon g-2 实验收集的统计数据将是费米实验室的 3.5 倍。随着采集数据量的增加,受速度和精度的限制,现有的跟踪重建和磁场测量方法可能无法完全满足实验的要求。深度学习的突破激发了μ介子g-2实验中新的分析方法。在本论文中,我们将介绍基于递归神经网络(RNN)、图神经网络(GNN)的跟踪重建和基于物理信息神经网络(PINN)的磁场测量的一些初步研究。初步研究结果表明,深度学习方法在这些课题中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning based tracking reconstruction and magnetic field measurement research in the muon g-2 experiment

The Run1 result of the Fermilab muon g-2 experiment have shown a 4.2 standard deviation between the experimental measurement and theoretical prediction of aμ, strongly indicating a new physics signal. The Fermilab experiment already accumulated 21 times more data compared to the BNL experiment. The J-PARC muon g-2 experiment will collect 3.5 times the statistics compared to Fermilab. With the increases in the collected data volume, and limited by the speed and accuracy, the existing tracking reconstruction and magnetic field measurement method may not fully satisfy the requirement of the experiment. The breakthrough of the deep learning inspires new analysis method in the muon g-2 experiment. In this proceeding, we will present some preliminary research on the tracking reconstruction based on Recurrent Neural Network (RNN), Graph Neural Network (GNN) and the magnetic field measurement based on Physics Informed Neural Network (PINN). The preliminary results show that the deep learning method has enormous potential in these topics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear and Particle Physics Proceedings
Nuclear and Particle Physics Proceedings Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: Nuclear and Particle Physics Proceedings is the premier publication outlet for the proceedings of key conferences on nuclear and high-energy physics and related areas. The series covers both large international conferences and topical meetings. The newest discoveries and the latest developments, reported at carefully selected meetings, are published covering experimental as well as theoretical particle physics, nuclear and hadronic physics, cosmology, astrophysics and gravitation, field theory and statistical systems, and physical mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信