改进用于在氧化锌薄膜上合成双金属金-钯纳米粒子的激光诱导露化:优化通量以保证基底完整性

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
C. Sánchez-Aké, J. A. Segura-Zavala, O. Depablos-Rivera, M. A. Martínez-Fuentes, T. García-Fernández, S. S. Kanakkillam, Amauri Serrano-Lázaro
{"title":"改进用于在氧化锌薄膜上合成双金属金-钯纳米粒子的激光诱导露化:优化通量以保证基底完整性","authors":"C. Sánchez-Aké, J. A. Segura-Zavala, O. Depablos-Rivera, M. A. Martínez-Fuentes, T. García-Fernández, S. S. Kanakkillam, Amauri Serrano-Lázaro","doi":"10.2351/7.0001326","DOIUrl":null,"url":null,"abstract":"We report the fabrication of metal alloy Au–Pd nanoparticles on semiconductor thin film substrates (ZnO) by laser-induced dewetting. Employing a UV excimer laser, a single pulse was directed onto a three-layer film stack on a glass substrate: glass/ZnO/Au/Pd and glass/ZnO/Pd/Au. We simulated the temperature attained by the thin films enabling the prediction of energy thresholds required for melting the metal films but avoiding modifying the ZnO film. A specific range is reported of the pulse energy conducive to nanoparticle formation and the energy threshold required to modify the ZnO film beneath them. Depending on the pulse energy applied, the mean diameter of the nanoparticles varied from approximately 150 to around 70 nm. Notably, higher fluences resulted in smaller particles but also induced surface cracks in the ZnO film. Additionally, we observed a reduction in nanoparticle size with increased Pd content. Our results show that laser-induced dewetting can produce bimetallic alloy nanoparticles and, at the same time, ensure the preservation of the optical properties of the ZnO film. This approach opens avenues for tailoring material characteristics and expanding the range of applications of metal nanoparticles on semiconductor-based systems.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Refining laser-induced dewetting for bimetallic Au–Pd nanoparticle synthesis on ZnO thin films: Optimizing fluence for substrate integrity\",\"authors\":\"C. Sánchez-Aké, J. A. Segura-Zavala, O. Depablos-Rivera, M. A. Martínez-Fuentes, T. García-Fernández, S. S. Kanakkillam, Amauri Serrano-Lázaro\",\"doi\":\"10.2351/7.0001326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the fabrication of metal alloy Au–Pd nanoparticles on semiconductor thin film substrates (ZnO) by laser-induced dewetting. Employing a UV excimer laser, a single pulse was directed onto a three-layer film stack on a glass substrate: glass/ZnO/Au/Pd and glass/ZnO/Pd/Au. We simulated the temperature attained by the thin films enabling the prediction of energy thresholds required for melting the metal films but avoiding modifying the ZnO film. A specific range is reported of the pulse energy conducive to nanoparticle formation and the energy threshold required to modify the ZnO film beneath them. Depending on the pulse energy applied, the mean diameter of the nanoparticles varied from approximately 150 to around 70 nm. Notably, higher fluences resulted in smaller particles but also induced surface cracks in the ZnO film. Additionally, we observed a reduction in nanoparticle size with increased Pd content. Our results show that laser-induced dewetting can produce bimetallic alloy nanoparticles and, at the same time, ensure the preservation of the optical properties of the ZnO film. This approach opens avenues for tailoring material characteristics and expanding the range of applications of metal nanoparticles on semiconductor-based systems.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001326\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们报告了在半导体薄膜基底(氧化锌)上通过激光诱导露化制备金属合金金钯(Au-Pd)纳米粒子的过程。使用紫外准分子激光器,将单脉冲照射到玻璃基底上的三层薄膜堆上:玻璃/ZnO/金/钯和玻璃/ZnO/钯/金。我们模拟了薄膜达到的温度,从而预测了熔化金属薄膜所需的能量阈值,但避免了对氧化锌薄膜的改变。我们报告了有利于纳米粒子形成的脉冲能量的特定范围,以及改变其下氧化锌薄膜所需的能量阈值。根据所应用的脉冲能量,纳米粒子的平均直径从大约 150 纳米到大约 70 纳米不等。值得注意的是,较高的通量会导致颗粒变小,但同时也会诱发氧化锌薄膜出现表面裂纹。此外,我们还观察到随着钯含量的增加,纳米颗粒的尺寸也在减小。我们的研究结果表明,激光诱导脱墨可以产生双金属合金纳米粒子,同时还能确保保持氧化锌薄膜的光学特性。这种方法为定制材料特性和扩大金属纳米粒子在半导体系统中的应用范围开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refining laser-induced dewetting for bimetallic Au–Pd nanoparticle synthesis on ZnO thin films: Optimizing fluence for substrate integrity
We report the fabrication of metal alloy Au–Pd nanoparticles on semiconductor thin film substrates (ZnO) by laser-induced dewetting. Employing a UV excimer laser, a single pulse was directed onto a three-layer film stack on a glass substrate: glass/ZnO/Au/Pd and glass/ZnO/Pd/Au. We simulated the temperature attained by the thin films enabling the prediction of energy thresholds required for melting the metal films but avoiding modifying the ZnO film. A specific range is reported of the pulse energy conducive to nanoparticle formation and the energy threshold required to modify the ZnO film beneath them. Depending on the pulse energy applied, the mean diameter of the nanoparticles varied from approximately 150 to around 70 nm. Notably, higher fluences resulted in smaller particles but also induced surface cracks in the ZnO film. Additionally, we observed a reduction in nanoparticle size with increased Pd content. Our results show that laser-induced dewetting can produce bimetallic alloy nanoparticles and, at the same time, ensure the preservation of the optical properties of the ZnO film. This approach opens avenues for tailoring material characteristics and expanding the range of applications of metal nanoparticles on semiconductor-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信