{"title":"不同流动状态下稀释聚合物溶液有效粘度控制的划分","authors":"Sultan Dwier , Ali Garrouch , Haitham Lababidi","doi":"10.1016/j.fluid.2024.114143","DOIUrl":null,"url":null,"abstract":"<div><p>Carreau's model is a well-established standard in the scientific community for estimating the viscosity of polymer solutions as a function of shear rate. It accurately predicts effective viscosity in power-law and Newtonian flow regimes, distinguished by distinct asymptotic values at extremely low and high shear rates. However, existing analytical models for determining Carreau's parameters (zero-shear-viscosity, <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span>, power-law index, <span><math><mi>n</mi></math></span>, and relaxation-time constant, <span><math><mi>λ</mi></math></span>) have limitations. Typically expressed in terms of polymer solution concentration (<span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>), these models often overlook critical variables such as solvent salinity <span><math><mrow><mo>(</mo><msub><mi>C</mi><mi>NaCl</mi></msub><mo>)</mo></mrow></math></span>, hardness (<span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>), solution density (<span><math><msub><mi>ρ</mi><mi>s</mi></msub></math></span>), and polymer molecular weight (<span><math><mi>M</mi></math></span>). Additionally, many of these models lack dimensional consistency.</p><p>This study introduces a robust scientific method for modeling Carreau's parameters, integrating dimensional analysis with non-linear regression to delineate the factors influencing these parameters. The analysis indicates that the power-law index is primarily influenced by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, and <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>. The zero-shear-viscosity <span><math><mrow><mo>(</mo><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup><mo>)</mo></mrow></math></span> is governed by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>, <span><math><mi>M</mi></math></span>, <span><math><msub><mi>ρ</mi><mi>s</mi></msub></math></span>, pressure (<span><math><mi>P</mi></math></span>), and <span><math><mi>n</mi></math></span>, while the time constant (<span><math><mi>λ</mi></math></span>) is mainly determined by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>, <span><math><mi>n</mi></math></span>, and <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span>. The derived empirical models demonstrate a direct dependence of zero-shear viscosity on <span><math><msqrt><mi>P</mi></msqrt></math></span>, <span><math><mrow><mroot><mi>M</mi><mn>3</mn></mroot><mo>,</mo><mspace></mspace><mroot><msub><mi>ρ</mi><mi>s</mi></msub><mn>6</mn></mroot></mrow></math></span>, and an exponential dependence on <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, aligning with experimental observations. Incorporating variables like solution density, molecular weight, and pressure was crucial for enhancing the precision of <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span> and <span><math><mi>λ</mi></math></span> predictions. These models, validated against rheological measurements of three dilute EOR polymer solutions (HPAM and AMPS-based) in various conditions, have shown superior precision and impartiality compared to prominent existing models, representing a significant advancement in the field.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"584 ","pages":"Article 114143"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delineation of the effective viscosity controls of diluted polymer solutions at various flow regimes\",\"authors\":\"Sultan Dwier , Ali Garrouch , Haitham Lababidi\",\"doi\":\"10.1016/j.fluid.2024.114143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carreau's model is a well-established standard in the scientific community for estimating the viscosity of polymer solutions as a function of shear rate. It accurately predicts effective viscosity in power-law and Newtonian flow regimes, distinguished by distinct asymptotic values at extremely low and high shear rates. However, existing analytical models for determining Carreau's parameters (zero-shear-viscosity, <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span>, power-law index, <span><math><mi>n</mi></math></span>, and relaxation-time constant, <span><math><mi>λ</mi></math></span>) have limitations. Typically expressed in terms of polymer solution concentration (<span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>), these models often overlook critical variables such as solvent salinity <span><math><mrow><mo>(</mo><msub><mi>C</mi><mi>NaCl</mi></msub><mo>)</mo></mrow></math></span>, hardness (<span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>), solution density (<span><math><msub><mi>ρ</mi><mi>s</mi></msub></math></span>), and polymer molecular weight (<span><math><mi>M</mi></math></span>). Additionally, many of these models lack dimensional consistency.</p><p>This study introduces a robust scientific method for modeling Carreau's parameters, integrating dimensional analysis with non-linear regression to delineate the factors influencing these parameters. The analysis indicates that the power-law index is primarily influenced by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, and <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>. The zero-shear-viscosity <span><math><mrow><mo>(</mo><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup><mo>)</mo></mrow></math></span> is governed by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>, <span><math><mi>M</mi></math></span>, <span><math><msub><mi>ρ</mi><mi>s</mi></msub></math></span>, pressure (<span><math><mi>P</mi></math></span>), and <span><math><mi>n</mi></math></span>, while the time constant (<span><math><mi>λ</mi></math></span>) is mainly determined by <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>N</mi><mi>a</mi><mi>C</mi><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mi>C</mi><mrow><mi>c</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup></mrow></msub></math></span>, <span><math><mi>n</mi></math></span>, and <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span>. The derived empirical models demonstrate a direct dependence of zero-shear viscosity on <span><math><msqrt><mi>P</mi></msqrt></math></span>, <span><math><mrow><mroot><mi>M</mi><mn>3</mn></mroot><mo>,</mo><mspace></mspace><mroot><msub><mi>ρ</mi><mi>s</mi></msub><mn>6</mn></mroot></mrow></math></span>, and an exponential dependence on <span><math><msub><mi>C</mi><mi>p</mi></msub></math></span>, aligning with experimental observations. Incorporating variables like solution density, molecular weight, and pressure was crucial for enhancing the precision of <span><math><msubsup><mi>μ</mi><mi>p</mi><mo>∘</mo></msubsup></math></span> and <span><math><mi>λ</mi></math></span> predictions. These models, validated against rheological measurements of three dilute EOR polymer solutions (HPAM and AMPS-based) in various conditions, have shown superior precision and impartiality compared to prominent existing models, representing a significant advancement in the field.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"584 \",\"pages\":\"Article 114143\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224001201\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001201","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Delineation of the effective viscosity controls of diluted polymer solutions at various flow regimes
Carreau's model is a well-established standard in the scientific community for estimating the viscosity of polymer solutions as a function of shear rate. It accurately predicts effective viscosity in power-law and Newtonian flow regimes, distinguished by distinct asymptotic values at extremely low and high shear rates. However, existing analytical models for determining Carreau's parameters (zero-shear-viscosity, , power-law index, , and relaxation-time constant, ) have limitations. Typically expressed in terms of polymer solution concentration (), these models often overlook critical variables such as solvent salinity , hardness (), solution density (), and polymer molecular weight (). Additionally, many of these models lack dimensional consistency.
This study introduces a robust scientific method for modeling Carreau's parameters, integrating dimensional analysis with non-linear regression to delineate the factors influencing these parameters. The analysis indicates that the power-law index is primarily influenced by , , and . The zero-shear-viscosity is governed by , , , , , pressure (), and , while the time constant () is mainly determined by , , , , and . The derived empirical models demonstrate a direct dependence of zero-shear viscosity on , , and an exponential dependence on , aligning with experimental observations. Incorporating variables like solution density, molecular weight, and pressure was crucial for enhancing the precision of and predictions. These models, validated against rheological measurements of three dilute EOR polymer solutions (HPAM and AMPS-based) in various conditions, have shown superior precision and impartiality compared to prominent existing models, representing a significant advancement in the field.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.