A.-J. Soini , I.T. Kukkonen , H. Suhonen , B. Lukić , A.V. Luttinen
{"title":"两块L型软玉的三维孔隙度、流动和传输特征揭示了与湿吸积有关的宇宙网状孔隙度","authors":"A.-J. Soini , I.T. Kukkonen , H. Suhonen , B. Lukić , A.V. Luttinen","doi":"10.1016/j.pss.2024.105915","DOIUrl":null,"url":null,"abstract":"<div><p>Porosity, with its structure-dependent flow properties (permeability and tortuosity) and transport properties (thermal conductivity and thermal diffusivity), is closely related to the accretion, thermal metamorphism, and associated hydrothermal alteration of ordinary chondrite (OC) parent bodies. Using synchrotron radiation microtomography (SRμCT), we reveal the varying porosity structures in two L chondrite falls of low (Mezö-Madaras L3.7) and high (Bath Furnace L6) petrologic types and quantify porosity properties, such as shape and connectivity, and related effective permeability and tortuosity factor. Although the two specimens demonstrate similar effective permeabilities, they exhibit significantly different tortuosity factors and textures of porosity, which include notable differences in void throat diameters, complexity and density of the interconnected void network, heterogeneity in void distribution, and the extent of primary and secondary porosity. The complex relationships among porosity, permeability, tortuosity, and thermal conductivity can be explained by the varying void arrangements related to varying grain sizes among the petrologic types of OCs, which in turn reflect their varying evolutionary paths.</p><p>Electron microprobe and attached energy-dispersive X-ray spectrometer reveal signs of hydrothermal alteration in both petrologic types. High-energy SRμCT imaging (0.65 μm voxel size) reveals the presence of a new microporosity substructure resembling a microscopic cosmic web, which may be linked to fluid-assisted metamorphism and hydrothermal alteration during wet accretion of the parent body. Furthermore, the proportion of this continuous porosity may be related to the temperatures associated with different petrologic types, and the wet accretion model may resolve the lack of correlation between petrologic types and porosity of OCs. Finally, the uncovered cosmic web-like microporosity structure may explain the observed concurrent high thermal conductivity, low permeability, and high porosity of the high-petrologic-type OCs.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"247 ","pages":"Article 105915"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032063324000795/pdfft?md5=2b20e0684139e73c0b6034d0b9071eea&pid=1-s2.0-S0032063324000795-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D porosity, flow, and transport characteristics of two L chondrites reveal wet accretion-related cosmic web-like porosity\",\"authors\":\"A.-J. Soini , I.T. Kukkonen , H. Suhonen , B. Lukić , A.V. Luttinen\",\"doi\":\"10.1016/j.pss.2024.105915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Porosity, with its structure-dependent flow properties (permeability and tortuosity) and transport properties (thermal conductivity and thermal diffusivity), is closely related to the accretion, thermal metamorphism, and associated hydrothermal alteration of ordinary chondrite (OC) parent bodies. Using synchrotron radiation microtomography (SRμCT), we reveal the varying porosity structures in two L chondrite falls of low (Mezö-Madaras L3.7) and high (Bath Furnace L6) petrologic types and quantify porosity properties, such as shape and connectivity, and related effective permeability and tortuosity factor. Although the two specimens demonstrate similar effective permeabilities, they exhibit significantly different tortuosity factors and textures of porosity, which include notable differences in void throat diameters, complexity and density of the interconnected void network, heterogeneity in void distribution, and the extent of primary and secondary porosity. The complex relationships among porosity, permeability, tortuosity, and thermal conductivity can be explained by the varying void arrangements related to varying grain sizes among the petrologic types of OCs, which in turn reflect their varying evolutionary paths.</p><p>Electron microprobe and attached energy-dispersive X-ray spectrometer reveal signs of hydrothermal alteration in both petrologic types. High-energy SRμCT imaging (0.65 μm voxel size) reveals the presence of a new microporosity substructure resembling a microscopic cosmic web, which may be linked to fluid-assisted metamorphism and hydrothermal alteration during wet accretion of the parent body. Furthermore, the proportion of this continuous porosity may be related to the temperatures associated with different petrologic types, and the wet accretion model may resolve the lack of correlation between petrologic types and porosity of OCs. Finally, the uncovered cosmic web-like microporosity structure may explain the observed concurrent high thermal conductivity, low permeability, and high porosity of the high-petrologic-type OCs.</p></div>\",\"PeriodicalId\":20054,\"journal\":{\"name\":\"Planetary and Space Science\",\"volume\":\"247 \",\"pages\":\"Article 105915\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0032063324000795/pdfft?md5=2b20e0684139e73c0b6034d0b9071eea&pid=1-s2.0-S0032063324000795-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planetary and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032063324000795\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000795","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
3D porosity, flow, and transport characteristics of two L chondrites reveal wet accretion-related cosmic web-like porosity
Porosity, with its structure-dependent flow properties (permeability and tortuosity) and transport properties (thermal conductivity and thermal diffusivity), is closely related to the accretion, thermal metamorphism, and associated hydrothermal alteration of ordinary chondrite (OC) parent bodies. Using synchrotron radiation microtomography (SRμCT), we reveal the varying porosity structures in two L chondrite falls of low (Mezö-Madaras L3.7) and high (Bath Furnace L6) petrologic types and quantify porosity properties, such as shape and connectivity, and related effective permeability and tortuosity factor. Although the two specimens demonstrate similar effective permeabilities, they exhibit significantly different tortuosity factors and textures of porosity, which include notable differences in void throat diameters, complexity and density of the interconnected void network, heterogeneity in void distribution, and the extent of primary and secondary porosity. The complex relationships among porosity, permeability, tortuosity, and thermal conductivity can be explained by the varying void arrangements related to varying grain sizes among the petrologic types of OCs, which in turn reflect their varying evolutionary paths.
Electron microprobe and attached energy-dispersive X-ray spectrometer reveal signs of hydrothermal alteration in both petrologic types. High-energy SRμCT imaging (0.65 μm voxel size) reveals the presence of a new microporosity substructure resembling a microscopic cosmic web, which may be linked to fluid-assisted metamorphism and hydrothermal alteration during wet accretion of the parent body. Furthermore, the proportion of this continuous porosity may be related to the temperatures associated with different petrologic types, and the wet accretion model may resolve the lack of correlation between petrologic types and porosity of OCs. Finally, the uncovered cosmic web-like microporosity structure may explain the observed concurrent high thermal conductivity, low permeability, and high porosity of the high-petrologic-type OCs.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research