中子星物理学的粒子理论输入

IF 0.9 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
A. Vuorinen
{"title":"中子星物理学的粒子理论输入","authors":"A. Vuorinen","doi":"10.5506/APhysPolB.55.4-A4","DOIUrl":null,"url":null,"abstract":"Understanding the properties and physical phase of the dense strongly interacting matter present in the cores of neutron stars or created in their binary mergers remains one of the most prominent open problems in nuclear astrophysics. While most microscopic analyses have historically relied on solvable phenomenological models of nuclear and quark matter, in recent years a model-independent approach utilizing only controlled ab-initio calculations and astrophysical observations has emerged as a viable alternative. In these lecture notes, I review recent progress in first-principles weak-coupling calculations within high-density quark matter, shedding light on its thermodynamic and transport properties. I cover the most important technical tools used in such calculations, introduce selected highlight results, and explain how this information can be used in phenomenological studies of neutron-star physics. The notes do not offer a self-consistent treatment of the topics covered, but rather aim at filling gaps in existing textbooks on thermal field theory and at connecting the dots in a story developed in several recent research articles, to which the interested reader is directed for further technical details.","PeriodicalId":7060,"journal":{"name":"Acta Physica Polonica B","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle-theory Input for Neutron-star Physics\",\"authors\":\"A. Vuorinen\",\"doi\":\"10.5506/APhysPolB.55.4-A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the properties and physical phase of the dense strongly interacting matter present in the cores of neutron stars or created in their binary mergers remains one of the most prominent open problems in nuclear astrophysics. While most microscopic analyses have historically relied on solvable phenomenological models of nuclear and quark matter, in recent years a model-independent approach utilizing only controlled ab-initio calculations and astrophysical observations has emerged as a viable alternative. In these lecture notes, I review recent progress in first-principles weak-coupling calculations within high-density quark matter, shedding light on its thermodynamic and transport properties. I cover the most important technical tools used in such calculations, introduce selected highlight results, and explain how this information can be used in phenomenological studies of neutron-star physics. The notes do not offer a self-consistent treatment of the topics covered, but rather aim at filling gaps in existing textbooks on thermal field theory and at connecting the dots in a story developed in several recent research articles, to which the interested reader is directed for further technical details.\",\"PeriodicalId\":7060,\"journal\":{\"name\":\"Acta Physica Polonica B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Polonica B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5506/APhysPolB.55.4-A4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5506/APhysPolB.55.4-A4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解存在于中子星内核或在其双星合并过程中产生的致密强相互作用物质的性质和物理相位,仍然是核天体物理学中最突出的未决问题之一。虽然大多数微观分析历来依赖于核物质和夸克物质的可解现象学模型,但近年来,一种仅利用受控非线性计算和天体物理观测的独立于模型的方法已成为一种可行的替代方法。在这些讲座笔记中,我回顾了高密度夸克物质第一原理弱耦合计算的最新进展,揭示了其热力学和输运特性。我将介绍此类计算中使用的最重要的技术工具,介绍选定的重点结果,并解释如何将这些信息用于中子星物理学的现象学研究。这些注释并不是对所涉及主题的自洽处理,而是旨在填补现有热场理论教科书中的空白,并将最近几篇研究文章中的故事串联起来,感兴趣的读者可参阅这些文章,了解更多技术细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle-theory Input for Neutron-star Physics
Understanding the properties and physical phase of the dense strongly interacting matter present in the cores of neutron stars or created in their binary mergers remains one of the most prominent open problems in nuclear astrophysics. While most microscopic analyses have historically relied on solvable phenomenological models of nuclear and quark matter, in recent years a model-independent approach utilizing only controlled ab-initio calculations and astrophysical observations has emerged as a viable alternative. In these lecture notes, I review recent progress in first-principles weak-coupling calculations within high-density quark matter, shedding light on its thermodynamic and transport properties. I cover the most important technical tools used in such calculations, introduce selected highlight results, and explain how this information can be used in phenomenological studies of neutron-star physics. The notes do not offer a self-consistent treatment of the topics covered, but rather aim at filling gaps in existing textbooks on thermal field theory and at connecting the dots in a story developed in several recent research articles, to which the interested reader is directed for further technical details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Polonica B
Acta Physica Polonica B 物理-物理:综合
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
3-8 weeks
期刊介绍: Acta Physica Polonica B covers the following areas of physics: -General and Mathematical Physics- Particle Physics and Field Theory- Nuclear Physics- Theory of Relativity and Astrophysics- Statistical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信