基于神经网络的空气质量预测研究

Ruihao Wan
{"title":"基于神经网络的空气质量预测研究","authors":"Ruihao Wan","doi":"10.54097/w80vg420","DOIUrl":null,"url":null,"abstract":"In view of the increasingly serious air pollution problem, to alleviate the harmful effects of air pollution on human body and society, this paper studies the prediction of air quality. Due to the nonlinear, regional and dispersive characteristics of pollutant data, the effective utilization rate of data is low and the prediction process is extremely complicated. How to effectively build a prediction model and improve the prediction accuracy of air quality is a hot issue in current research. This paper mainly introduces the current research status of air quality prediction.","PeriodicalId":504530,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on Air Quality Prediction Based on Neural Networks\",\"authors\":\"Ruihao Wan\",\"doi\":\"10.54097/w80vg420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the increasingly serious air pollution problem, to alleviate the harmful effects of air pollution on human body and society, this paper studies the prediction of air quality. Due to the nonlinear, regional and dispersive characteristics of pollutant data, the effective utilization rate of data is low and the prediction process is extremely complicated. How to effectively build a prediction model and improve the prediction accuracy of air quality is a hot issue in current research. This paper mainly introduces the current research status of air quality prediction.\",\"PeriodicalId\":504530,\"journal\":{\"name\":\"Frontiers in Computing and Intelligent Systems\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/w80vg420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/w80vg420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对日益严重的空气污染问题,为减轻空气污染对人体和社会的危害,本文对空气质量预测进行了研究。由于污染物数据的非线性、区域性和分散性等特点,数据的有效利用率较低,预测过程极为复杂。如何有效建立预测模型,提高空气质量预测精度,是当前研究的热点问题。本文主要介绍了空气质量预测的研究现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Air Quality Prediction Based on Neural Networks
In view of the increasingly serious air pollution problem, to alleviate the harmful effects of air pollution on human body and society, this paper studies the prediction of air quality. Due to the nonlinear, regional and dispersive characteristics of pollutant data, the effective utilization rate of data is low and the prediction process is extremely complicated. How to effectively build a prediction model and improve the prediction accuracy of air quality is a hot issue in current research. This paper mainly introduces the current research status of air quality prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信