基于虚拟现实技术的产品设计互动与体验

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Qianqian Hu
{"title":"基于虚拟现实技术的产品设计互动与体验","authors":"Qianqian Hu","doi":"10.52783/jes.3735","DOIUrl":null,"url":null,"abstract":"Artificial intelligence involves imitating human thought, consciousness, and other aspects. This is similar to having machine with human brain that can think, produce independently. However, unlike human brain, it has a speed, memory advantage. A virtual reality interactive glove is built using a nine-axis inertial sensor, an artificial intelligence deep learning algorithm. In this research work, Product Design Interaction and Experience Based on Virtual Reality Technology (PDIE-VRT-SCGAN) were proposed. Initially, input gestures data are gathered from the Virtual Reality Experiences (VRE) dataset. The input gestures data is then pre-processed using Multi-Window Savitzky-Golay Filter (MWSGF) to reduce noises, increase overall quality of the gestures data. In order to improving overall user engagement in product design interactions on virtual reality (VR) technology, the pre-processed gestures data are then fed into an adversarial network called a Semi-Cycled Generative Adversarial Network (SCGAN). In general, SCGAN does not express some adaption of optimization strategies for determining optimal parameters to promise exact to improving overall user engagement in product design interactions using VR technology. Therefore, FOX-inspired Optimization (FIO) is proposed to enhance weight parameter of SCGAN method, which precisely improving the user experience in product design interaction. The efficacy of PDIE-VRT-SCGAN method is assessed using a number of performance criteria, including tracking accuracy, frame rate, latency, rendering time, error rate, and user error. The proposed PDIE-VRT-SCGAN method attains 22.36%, 25.42% and 18.17% higher tracking accuracy, 21.26%, 15.42% and 19.27% higher latency, 28.36%, 25.32% and 28.27% higher frame rate compared with existing methods, such as design and implementation of virtual reality interactive product software depend on artificial intelligence deep learning algorithm(DVRI-PS-AI-DL), virtual evaluation system for product designing utilizing virtual reality (VES-PD-VR), and analysis of unsatisfying user experiences with unmet psychological needs for virtual reality exergames utilizing deep learning approach (AUUE-UP-VRE-DLA) respectively.","PeriodicalId":44451,"journal":{"name":"Journal of Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Product Design Interaction and Experience Based on Virtual Reality Technology\",\"authors\":\"Qianqian Hu\",\"doi\":\"10.52783/jes.3735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence involves imitating human thought, consciousness, and other aspects. This is similar to having machine with human brain that can think, produce independently. However, unlike human brain, it has a speed, memory advantage. A virtual reality interactive glove is built using a nine-axis inertial sensor, an artificial intelligence deep learning algorithm. In this research work, Product Design Interaction and Experience Based on Virtual Reality Technology (PDIE-VRT-SCGAN) were proposed. Initially, input gestures data are gathered from the Virtual Reality Experiences (VRE) dataset. The input gestures data is then pre-processed using Multi-Window Savitzky-Golay Filter (MWSGF) to reduce noises, increase overall quality of the gestures data. In order to improving overall user engagement in product design interactions on virtual reality (VR) technology, the pre-processed gestures data are then fed into an adversarial network called a Semi-Cycled Generative Adversarial Network (SCGAN). In general, SCGAN does not express some adaption of optimization strategies for determining optimal parameters to promise exact to improving overall user engagement in product design interactions using VR technology. Therefore, FOX-inspired Optimization (FIO) is proposed to enhance weight parameter of SCGAN method, which precisely improving the user experience in product design interaction. The efficacy of PDIE-VRT-SCGAN method is assessed using a number of performance criteria, including tracking accuracy, frame rate, latency, rendering time, error rate, and user error. The proposed PDIE-VRT-SCGAN method attains 22.36%, 25.42% and 18.17% higher tracking accuracy, 21.26%, 15.42% and 19.27% higher latency, 28.36%, 25.32% and 28.27% higher frame rate compared with existing methods, such as design and implementation of virtual reality interactive product software depend on artificial intelligence deep learning algorithm(DVRI-PS-AI-DL), virtual evaluation system for product designing utilizing virtual reality (VES-PD-VR), and analysis of unsatisfying user experiences with unmet psychological needs for virtual reality exergames utilizing deep learning approach (AUUE-UP-VRE-DLA) respectively.\",\"PeriodicalId\":44451,\"journal\":{\"name\":\"Journal of Electrical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/jes.3735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/jes.3735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人工智能涉及模仿人类的思维、意识和其他方面。这就好比拥有人脑的机器可以独立思考、生产。但与人脑不同的是,它具有速度、记忆等方面的优势。利用九轴惯性传感器和人工智能深度学习算法,我们制作了一款虚拟现实交互手套。在这项研究工作中,提出了基于虚拟现实技术的产品设计交互与体验(PDIE-VRT-SCGAN)。首先,从虚拟现实体验(VRE)数据集中收集输入手势数据。然后使用多窗口萨维茨基-戈莱滤波器(MWSGF)对输入手势数据进行预处理,以减少噪音,提高手势数据的整体质量。为了提高用户在虚拟现实(VR)技术产品设计交互中的整体参与度,预处理后的手势数据会被输入一个称为半循环生成对抗网络(SCGAN)的对抗网络。一般来说,SCGAN 并不表达一些自适应的优化策略,以确定最佳参数,从而在使用 VR 技术进行产品设计交互时准确地提高整体用户参与度。因此,我们提出了 FIO(Fox-inspired Optimization)来增强 SCGAN 方法的权重参数,从而精确改善产品设计交互中的用户体验。PDIE-VRT-SCGAN方法的功效通过一系列性能标准进行评估,包括跟踪精度、帧速率、延迟、渲染时间、错误率和用户误差。与现有方法相比,拟议的 PDIE-VRT-SCGAN 方法的跟踪精度分别提高了 22.36%、25.42% 和 18.17%,延迟时间分别提高了 21.26%、15.42% 和 19.27%,错误率分别提高了 28.36%、25.32% 和 28.27%。与现有方法相比,帧率分别提高了 22.36%、25.42%和 18.17%,如依赖人工智能深度学习算法的虚拟现实交互产品软件的设计与实现(DVRI-PS-AI-DL)、利用虚拟现实技术的产品设计虚拟评估系统(VES-PD-VR)、利用深度学习方法的虚拟现实外设游戏未满足用户心理需求的不满意体验分析(AUUE-UP-VRE-DLA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Product Design Interaction and Experience Based on Virtual Reality Technology
Artificial intelligence involves imitating human thought, consciousness, and other aspects. This is similar to having machine with human brain that can think, produce independently. However, unlike human brain, it has a speed, memory advantage. A virtual reality interactive glove is built using a nine-axis inertial sensor, an artificial intelligence deep learning algorithm. In this research work, Product Design Interaction and Experience Based on Virtual Reality Technology (PDIE-VRT-SCGAN) were proposed. Initially, input gestures data are gathered from the Virtual Reality Experiences (VRE) dataset. The input gestures data is then pre-processed using Multi-Window Savitzky-Golay Filter (MWSGF) to reduce noises, increase overall quality of the gestures data. In order to improving overall user engagement in product design interactions on virtual reality (VR) technology, the pre-processed gestures data are then fed into an adversarial network called a Semi-Cycled Generative Adversarial Network (SCGAN). In general, SCGAN does not express some adaption of optimization strategies for determining optimal parameters to promise exact to improving overall user engagement in product design interactions using VR technology. Therefore, FOX-inspired Optimization (FIO) is proposed to enhance weight parameter of SCGAN method, which precisely improving the user experience in product design interaction. The efficacy of PDIE-VRT-SCGAN method is assessed using a number of performance criteria, including tracking accuracy, frame rate, latency, rendering time, error rate, and user error. The proposed PDIE-VRT-SCGAN method attains 22.36%, 25.42% and 18.17% higher tracking accuracy, 21.26%, 15.42% and 19.27% higher latency, 28.36%, 25.32% and 28.27% higher frame rate compared with existing methods, such as design and implementation of virtual reality interactive product software depend on artificial intelligence deep learning algorithm(DVRI-PS-AI-DL), virtual evaluation system for product designing utilizing virtual reality (VES-PD-VR), and analysis of unsatisfying user experiences with unmet psychological needs for virtual reality exergames utilizing deep learning approach (AUUE-UP-VRE-DLA) respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Systems
Journal of Electrical Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.10
自引率
25.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信