Gerard L. Gbaguidi Aisse, O. Aleshina, I. A. Mamieva
{"title":"具有相同主框架的三个带规则中表面薄壳的几何研究","authors":"Gerard L. Gbaguidi Aisse, O. Aleshina, I. A. Mamieva","doi":"10.22363/1815-5235-2024-20-2-146-158","DOIUrl":null,"url":null,"abstract":"It is proved and illustrated that by taking the main frame of the surface, consisting of three plane curves placed in three coordinate planes, three different algebraic surfaces with the same rigid frame can be designed. For the first time, one three of new ruled surfaces in a family of five threes of ruled surfaces, formed on the basis of some shapes of hulls of river and see ships, which, in turn, are projected in the form of algebraic surfaces with a main frame of three superellipses or of three other plane curves, is under consideration in detail with a standpoint of differential geometry. The geometrical properties of the ruled surfaces taken as the middle surfaces of thin shells for industrial and civil engineering are presented. Analytical formulas for determination of force resultants with using the approximate momentless theory of shells of zero Gaussian curvature given by non-orthogonal conjugate curvilinear coordinates are offered for the first time. The results derived using these formulae will help to correct the results obtained by numerical methods.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" August","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Investigation of Three Thin Shells with Ruled Middle Surfaces with the Same Main Frame\",\"authors\":\"Gerard L. Gbaguidi Aisse, O. Aleshina, I. A. Mamieva\",\"doi\":\"10.22363/1815-5235-2024-20-2-146-158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proved and illustrated that by taking the main frame of the surface, consisting of three plane curves placed in three coordinate planes, three different algebraic surfaces with the same rigid frame can be designed. For the first time, one three of new ruled surfaces in a family of five threes of ruled surfaces, formed on the basis of some shapes of hulls of river and see ships, which, in turn, are projected in the form of algebraic surfaces with a main frame of three superellipses or of three other plane curves, is under consideration in detail with a standpoint of differential geometry. The geometrical properties of the ruled surfaces taken as the middle surfaces of thin shells for industrial and civil engineering are presented. Analytical formulas for determination of force resultants with using the approximate momentless theory of shells of zero Gaussian curvature given by non-orthogonal conjugate curvilinear coordinates are offered for the first time. The results derived using these formulae will help to correct the results obtained by numerical methods.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\" August\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2024-20-2-146-158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2024-20-2-146-158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric Investigation of Three Thin Shells with Ruled Middle Surfaces with the Same Main Frame
It is proved and illustrated that by taking the main frame of the surface, consisting of three plane curves placed in three coordinate planes, three different algebraic surfaces with the same rigid frame can be designed. For the first time, one three of new ruled surfaces in a family of five threes of ruled surfaces, formed on the basis of some shapes of hulls of river and see ships, which, in turn, are projected in the form of algebraic surfaces with a main frame of three superellipses or of three other plane curves, is under consideration in detail with a standpoint of differential geometry. The geometrical properties of the ruled surfaces taken as the middle surfaces of thin shells for industrial and civil engineering are presented. Analytical formulas for determination of force resultants with using the approximate momentless theory of shells of zero Gaussian curvature given by non-orthogonal conjugate curvilinear coordinates are offered for the first time. The results derived using these formulae will help to correct the results obtained by numerical methods.