基于核先验的广义指数分布贝叶斯推理

M. Maswadah, Seham Mohamed
{"title":"基于核先验的广义指数分布贝叶斯推理","authors":"M. Maswadah, Seham Mohamed","doi":"10.11648/j.sjams.20241202.12","DOIUrl":null,"url":null,"abstract":"In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.\n","PeriodicalId":490938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"121 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior\",\"authors\":\"M. Maswadah, Seham Mohamed\",\"doi\":\"10.11648/j.sjams.20241202.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.\\n\",\"PeriodicalId\":490938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"121 43\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.11648/j.sjams.20241202.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.11648/j.sjams.20241202.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了基于核密度估计的客观先验,以消除贝叶斯估计对数据以外信息的主观性。为了比较核先验与信息伽马先验,我们使用对称和非对称损失函数,通过蒙特卡罗模拟研究了广义指数分布(GE)参数估计的均方误差和平均百分比误差。模拟结果表明,核先验优于信息伽马先验。最后,给出了一个数值示例来证明所提出的先验的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior
In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信