{"title":"基于核先验的广义指数分布贝叶斯推理","authors":"M. Maswadah, Seham Mohamed","doi":"10.11648/j.sjams.20241202.12","DOIUrl":null,"url":null,"abstract":"In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.\n","PeriodicalId":490938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"121 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior\",\"authors\":\"M. Maswadah, Seham Mohamed\",\"doi\":\"10.11648/j.sjams.20241202.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.\\n\",\"PeriodicalId\":490938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"121 43\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.11648/j.sjams.20241202.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.11648/j.sjams.20241202.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior
In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.