热液碳化行为中保温时间对产炭量影响的研究

Q3 Chemical Engineering
Widya Wijayanti, Purnami, Lilis Yuliati, Mega Nur Sasongko, Elvinda Sangkilang, Yafi Dwi Saputra, Rizky Kusumastuti
{"title":"热液碳化行为中保温时间对产炭量影响的研究","authors":"Widya Wijayanti, Purnami, Lilis Yuliati, Mega Nur Sasongko, Elvinda Sangkilang, Yafi Dwi Saputra, Rizky Kusumastuti","doi":"10.37934/arfmts.117.1.118131","DOIUrl":null,"url":null,"abstract":"This study investigates the energy conversion process of biomass into solid fuel, focusing on hydrothermal carbonization as the chosen method. The aim of study is to produce char with a higher energy yield compared to conventional combustion and pyrolysis methods. By manipulating the holding time in the hydrothermal process, this research examines the energy yields and their relationship with the storage and release of energy, thus impacting the heating values of the resulting char. The study establishes the optimal processing time critical for energy savings in hydrothermal energy conversion. Using mahogany wood as the initial biomass at a pressure of 5 atm and T = 200°C, the experiment involved a 200 g biomass with a 1:4 biomass to water ratio. The holding times varied at intervals of 30, 60, 90, and 120 minutes, respectively. The results indicate a direct proportionality between energy yields and heating values. The highest heating value of char, recorded at 5560.9088 kcal/kg, was achieved at a holding time of 60 minutes, while the lowest value, 2911.501 kcal/kg, was observed at 30 minutes. This suggests that a 60-minute duration in the carbonization process yields maximum energy output. Proximate analysis further supports this, indicating elevated levels of fixed carbon and volatile matter in the hydrothermal process. Then, the comparative analysis demonstrates that the heating value of the char exceeds that of char produced by pyrolysis and even surpasses raw mahogany wood. This study highlights the efficiency of a 60-minute hydrothermal carbonization process in maximizing energy yield, emphasizing its potential in biomass energy conversion.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of the Holding Time Effect on Char Yield Production in Hydrothermal Carbonization Behavior\",\"authors\":\"Widya Wijayanti, Purnami, Lilis Yuliati, Mega Nur Sasongko, Elvinda Sangkilang, Yafi Dwi Saputra, Rizky Kusumastuti\",\"doi\":\"10.37934/arfmts.117.1.118131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the energy conversion process of biomass into solid fuel, focusing on hydrothermal carbonization as the chosen method. The aim of study is to produce char with a higher energy yield compared to conventional combustion and pyrolysis methods. By manipulating the holding time in the hydrothermal process, this research examines the energy yields and their relationship with the storage and release of energy, thus impacting the heating values of the resulting char. The study establishes the optimal processing time critical for energy savings in hydrothermal energy conversion. Using mahogany wood as the initial biomass at a pressure of 5 atm and T = 200°C, the experiment involved a 200 g biomass with a 1:4 biomass to water ratio. The holding times varied at intervals of 30, 60, 90, and 120 minutes, respectively. The results indicate a direct proportionality between energy yields and heating values. The highest heating value of char, recorded at 5560.9088 kcal/kg, was achieved at a holding time of 60 minutes, while the lowest value, 2911.501 kcal/kg, was observed at 30 minutes. This suggests that a 60-minute duration in the carbonization process yields maximum energy output. Proximate analysis further supports this, indicating elevated levels of fixed carbon and volatile matter in the hydrothermal process. Then, the comparative analysis demonstrates that the heating value of the char exceeds that of char produced by pyrolysis and even surpasses raw mahogany wood. This study highlights the efficiency of a 60-minute hydrothermal carbonization process in maximizing energy yield, emphasizing its potential in biomass energy conversion.\",\"PeriodicalId\":37460,\"journal\":{\"name\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/arfmts.117.1.118131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.117.1.118131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了生物质转化为固体燃料的能量转换过程,重点是水热碳化法。与传统的燃烧和热解方法相比,本研究的目的是生产能量产出率更高的炭。通过控制水热法过程中的保温时间,本研究考察了能量产量及其与能量储存和释放之间的关系,从而对所产生的炭的热值产生影响。该研究确定了水热能源转换中节能的最佳加工时间。实验使用红木作为初始生物质,压力为 5 atm,温度为 200°C,生物质与水的比例为 1:4,生物质重 200 g。保温时间分别为 30、60、90 和 120 分钟。结果表明,能量产量和热值成正比。保温时间为 60 分钟时,焦炭的加热值最高,为 5560.9088 千卡/千克,而保温时间为 30 分钟时,焦炭的加热值最低,为 2911.501 千卡/千克。这表明,碳化过程持续 60 分钟可产生最大能量输出。近似物分析进一步证实了这一点,表明水热法过程中固定碳和挥发性物质的含量较高。然后,比较分析表明,炭的热值超过了热解产生的炭,甚至超过了红木原木。这项研究强调了 60 分钟水热碳化过程在最大限度提高能源产量方面的效率,突出了其在生物质能源转换方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of the Holding Time Effect on Char Yield Production in Hydrothermal Carbonization Behavior
This study investigates the energy conversion process of biomass into solid fuel, focusing on hydrothermal carbonization as the chosen method. The aim of study is to produce char with a higher energy yield compared to conventional combustion and pyrolysis methods. By manipulating the holding time in the hydrothermal process, this research examines the energy yields and their relationship with the storage and release of energy, thus impacting the heating values of the resulting char. The study establishes the optimal processing time critical for energy savings in hydrothermal energy conversion. Using mahogany wood as the initial biomass at a pressure of 5 atm and T = 200°C, the experiment involved a 200 g biomass with a 1:4 biomass to water ratio. The holding times varied at intervals of 30, 60, 90, and 120 minutes, respectively. The results indicate a direct proportionality between energy yields and heating values. The highest heating value of char, recorded at 5560.9088 kcal/kg, was achieved at a holding time of 60 minutes, while the lowest value, 2911.501 kcal/kg, was observed at 30 minutes. This suggests that a 60-minute duration in the carbonization process yields maximum energy output. Proximate analysis further supports this, indicating elevated levels of fixed carbon and volatile matter in the hydrothermal process. Then, the comparative analysis demonstrates that the heating value of the char exceeds that of char produced by pyrolysis and even surpasses raw mahogany wood. This study highlights the efficiency of a 60-minute hydrothermal carbonization process in maximizing energy yield, emphasizing its potential in biomass energy conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信