{"title":"系统研究开发高效顺铂-槲皮素负载型仿生微生物的关键因素","authors":"Hardik Rana","doi":"10.52794/hujpharm.1298173","DOIUrl":null,"url":null,"abstract":"The present work aims to optimize and assess the Cisplatin (CIS) and Quercetin (QCT)-loaded biodegradable polymeric nanomicelles (PNM). The development of a quantitative method for the estimation of CIS and QCT in pharmaceutical dosage form was another objective. The aluminum plates coated with silica gel F254 used for separation of both the drugs employing Toluene: Methanol: Ethyl acetate: DMF: Triethylamine (5:0.5:3.5:1:1 drop % v/v/v/v/v) as mobile phase. Results of the validation parameter indicate that the developed method was precise, accurate, and robust. CIS and QCT-loaded PNM formulated using solvent evaporation technique employing poly lactic-co-glycolic acid (PLGA) 50:50. The Quality by Design (QbD) was accomplished to identify the critical manufacturing attributes and critical process parameters. Optimization of the formulation was performed by central composite design using particle size and % encapsulation efficiency as dependent variables. The amount of PLGA and Span selected as independent variables. Statistically substantial variables identified using regression analysis and analysis of variance. A diffusion study revealed that optimized nanomicelles were capable to sustain the drug release up to 8h. Zeta sizer, TEM confirmed the stability and nano-sized nanoparticles. CIS-QCT PNM was found to be an alternate route to systemic treatment.","PeriodicalId":39138,"journal":{"name":"Hacettepe University Journal of the Faculty of Pharmacy","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Scrutinization of Vital factors for the Development of Efficient Cisplatin-Quercetin Loaded Bionanomicelles\",\"authors\":\"Hardik Rana\",\"doi\":\"10.52794/hujpharm.1298173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work aims to optimize and assess the Cisplatin (CIS) and Quercetin (QCT)-loaded biodegradable polymeric nanomicelles (PNM). The development of a quantitative method for the estimation of CIS and QCT in pharmaceutical dosage form was another objective. The aluminum plates coated with silica gel F254 used for separation of both the drugs employing Toluene: Methanol: Ethyl acetate: DMF: Triethylamine (5:0.5:3.5:1:1 drop % v/v/v/v/v) as mobile phase. Results of the validation parameter indicate that the developed method was precise, accurate, and robust. CIS and QCT-loaded PNM formulated using solvent evaporation technique employing poly lactic-co-glycolic acid (PLGA) 50:50. The Quality by Design (QbD) was accomplished to identify the critical manufacturing attributes and critical process parameters. Optimization of the formulation was performed by central composite design using particle size and % encapsulation efficiency as dependent variables. The amount of PLGA and Span selected as independent variables. Statistically substantial variables identified using regression analysis and analysis of variance. A diffusion study revealed that optimized nanomicelles were capable to sustain the drug release up to 8h. Zeta sizer, TEM confirmed the stability and nano-sized nanoparticles. CIS-QCT PNM was found to be an alternate route to systemic treatment.\",\"PeriodicalId\":39138,\"journal\":{\"name\":\"Hacettepe University Journal of the Faculty of Pharmacy\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe University Journal of the Faculty of Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52794/hujpharm.1298173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe University Journal of the Faculty of Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52794/hujpharm.1298173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Systematic Scrutinization of Vital factors for the Development of Efficient Cisplatin-Quercetin Loaded Bionanomicelles
The present work aims to optimize and assess the Cisplatin (CIS) and Quercetin (QCT)-loaded biodegradable polymeric nanomicelles (PNM). The development of a quantitative method for the estimation of CIS and QCT in pharmaceutical dosage form was another objective. The aluminum plates coated with silica gel F254 used for separation of both the drugs employing Toluene: Methanol: Ethyl acetate: DMF: Triethylamine (5:0.5:3.5:1:1 drop % v/v/v/v/v) as mobile phase. Results of the validation parameter indicate that the developed method was precise, accurate, and robust. CIS and QCT-loaded PNM formulated using solvent evaporation technique employing poly lactic-co-glycolic acid (PLGA) 50:50. The Quality by Design (QbD) was accomplished to identify the critical manufacturing attributes and critical process parameters. Optimization of the formulation was performed by central composite design using particle size and % encapsulation efficiency as dependent variables. The amount of PLGA and Span selected as independent variables. Statistically substantial variables identified using regression analysis and analysis of variance. A diffusion study revealed that optimized nanomicelles were capable to sustain the drug release up to 8h. Zeta sizer, TEM confirmed the stability and nano-sized nanoparticles. CIS-QCT PNM was found to be an alternate route to systemic treatment.