{"title":"利用有机添加剂合成用于碱性电池的纳米电解二氧化锰","authors":"Himansulal Nayak","doi":"10.9734/ajocs/2024/v14i3308","DOIUrl":null,"url":null,"abstract":"This article discusses the impact of adding organic additives like glycine (GLY), sucrose (SUC), and saccharine (SACCH) on the electrical characteristics and microstructure of electrolytic manganese dioxide (EMD), which is made from an acidic aqueous sulphate solution. The structure and chemistry of EMD were ascertained by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). To assess the material's potential for use in alkaline batteries, its charge-discharge properties were ascertained. It was found that the majority of MnO2 in all the EMD samples was in the γ-phase, which is electrochemically active and useful for energy storage applications. When glycine, sucrose, and saccharine were added to the solution as organic additives, the electrochemical deposition of manganese dioxide (MnO2) resulted in an increase in current efficiency and a decrease in energy consumption. The SEM images demonstrated that when EMD was deposited with an additive, small grain sizes and discrete particles free of agglomeration were formed, but large grain sizes were obtained in the absence of additives. Charge-discharge characteristics suggested that the additions improve the ability of MnO2 structure to store energy. This suggested that the additions may have an impact on the morphology and size of the particles, and consequently, the electrochemical activities of the material that was electrodeposited. In the case of the additives examined in this paper, the outcome was the creation of a material with possible use in battery technology. \n","PeriodicalId":8505,"journal":{"name":"Asian Journal of Chemical Sciences","volume":"24 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Nano-electrolytic Manganese Dioxide for Alkaline Batteries Mediated by Organic Additives\",\"authors\":\"Himansulal Nayak\",\"doi\":\"10.9734/ajocs/2024/v14i3308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses the impact of adding organic additives like glycine (GLY), sucrose (SUC), and saccharine (SACCH) on the electrical characteristics and microstructure of electrolytic manganese dioxide (EMD), which is made from an acidic aqueous sulphate solution. The structure and chemistry of EMD were ascertained by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). To assess the material's potential for use in alkaline batteries, its charge-discharge properties were ascertained. It was found that the majority of MnO2 in all the EMD samples was in the γ-phase, which is electrochemically active and useful for energy storage applications. When glycine, sucrose, and saccharine were added to the solution as organic additives, the electrochemical deposition of manganese dioxide (MnO2) resulted in an increase in current efficiency and a decrease in energy consumption. The SEM images demonstrated that when EMD was deposited with an additive, small grain sizes and discrete particles free of agglomeration were formed, but large grain sizes were obtained in the absence of additives. Charge-discharge characteristics suggested that the additions improve the ability of MnO2 structure to store energy. This suggested that the additions may have an impact on the morphology and size of the particles, and consequently, the electrochemical activities of the material that was electrodeposited. In the case of the additives examined in this paper, the outcome was the creation of a material with possible use in battery technology. \\n\",\"PeriodicalId\":8505,\"journal\":{\"name\":\"Asian Journal of Chemical Sciences\",\"volume\":\"24 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Chemical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajocs/2024/v14i3308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajocs/2024/v14i3308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Nano-electrolytic Manganese Dioxide for Alkaline Batteries Mediated by Organic Additives
This article discusses the impact of adding organic additives like glycine (GLY), sucrose (SUC), and saccharine (SACCH) on the electrical characteristics and microstructure of electrolytic manganese dioxide (EMD), which is made from an acidic aqueous sulphate solution. The structure and chemistry of EMD were ascertained by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). To assess the material's potential for use in alkaline batteries, its charge-discharge properties were ascertained. It was found that the majority of MnO2 in all the EMD samples was in the γ-phase, which is electrochemically active and useful for energy storage applications. When glycine, sucrose, and saccharine were added to the solution as organic additives, the electrochemical deposition of manganese dioxide (MnO2) resulted in an increase in current efficiency and a decrease in energy consumption. The SEM images demonstrated that when EMD was deposited with an additive, small grain sizes and discrete particles free of agglomeration were formed, but large grain sizes were obtained in the absence of additives. Charge-discharge characteristics suggested that the additions improve the ability of MnO2 structure to store energy. This suggested that the additions may have an impact on the morphology and size of the particles, and consequently, the electrochemical activities of the material that was electrodeposited. In the case of the additives examined in this paper, the outcome was the creation of a material with possible use in battery technology.