HealpixMPI.jl:Healpix 细分方案在 Julia 中的 MPI 并行执行

Leo A. Bianchi
{"title":"HealpixMPI.jl:Healpix 细分方案在 Julia 中的 MPI 并行执行","authors":"Leo A. Bianchi","doi":"10.21105/joss.06467","DOIUrl":null,"url":null,"abstract":"Spherical Harmonic Transforms (SHTs) can be seen as Fourier Transforms’ spherical, two-dimensional counterparts, casting real-space data to the spectral domain and vice versa. As in Fourier analysis where a function is decomposed into a set of amplitude coefficients, an SHT allows any spherically-symmetric field, defined in real space, to be decomposed into a set of complex harmonic coefficients 𝑎 ℓ,𝑚 , commonly referred to as alms, where each quantifies the contribution of the corresponding spherical harmonic function.","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":"87 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HealpixMPI.jl: an MPI-parallel implementation of the\\nHealpix tessellation scheme in Julia\",\"authors\":\"Leo A. Bianchi\",\"doi\":\"10.21105/joss.06467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spherical Harmonic Transforms (SHTs) can be seen as Fourier Transforms’ spherical, two-dimensional counterparts, casting real-space data to the spectral domain and vice versa. As in Fourier analysis where a function is decomposed into a set of amplitude coefficients, an SHT allows any spherically-symmetric field, defined in real space, to be decomposed into a set of complex harmonic coefficients 𝑎 ℓ,𝑚 , commonly referred to as alms, where each quantifies the contribution of the corresponding spherical harmonic function.\",\"PeriodicalId\":94101,\"journal\":{\"name\":\"Journal of open source software\",\"volume\":\"87 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of open source software\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.21105/joss.06467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.21105/joss.06467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

球面谐波变换(SHT)可以看作是傅立叶变换的球面二维对应变换,它将实空间数据转换到频谱域,反之亦然。在傅里叶分析中,一个函数被分解成一组振幅系数,而 SHT 则可将实空间中定义的任何球面对称场分解成一组复次谐波系数 𝑎 ℓ,𝑚,通常称为施舍,其中每个系数都量化了相应球面谐波函数的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HealpixMPI.jl: an MPI-parallel implementation of the Healpix tessellation scheme in Julia
Spherical Harmonic Transforms (SHTs) can be seen as Fourier Transforms’ spherical, two-dimensional counterparts, casting real-space data to the spectral domain and vice versa. As in Fourier analysis where a function is decomposed into a set of amplitude coefficients, an SHT allows any spherically-symmetric field, defined in real space, to be decomposed into a set of complex harmonic coefficients 𝑎 ℓ,𝑚 , commonly referred to as alms, where each quantifies the contribution of the corresponding spherical harmonic function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信