使用环氧氯丙烷交联剂将聚乙烯亚胺固定在竹粘胶纤维上,以增强对漆树染料的吸附能力

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Onanong Cheerarot, Sunan Saikrasun
{"title":"使用环氧氯丙烷交联剂将聚乙烯亚胺固定在竹粘胶纤维上,以增强对漆树染料的吸附能力","authors":"Onanong Cheerarot,&nbsp;Sunan Saikrasun","doi":"10.1002/ep.14417","DOIUrl":null,"url":null,"abstract":"<p>Immobilization of polyethyleneimine (PEI) on bamboo viscose fiber using epichlorohydrin (ECH) crosslinker (ABF-<i>e</i>-PEI) was employed to enhance the ability of dyeing with lac. The results from morphological observation, thermal degradation behavior, Fourier transform infrared (FTIR) analysis, x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) clearly revealed the success of PEI-immobilizing on fiber surface with no significant change in intrinsic properties of the fiber after modification. The modified fiber exhibited fast and efficient adsorption with the adsorption capacity &gt;90 mg/g which was much higher than that of the unmodified adsorbent (did not exceed 10 mg/g). The results from kinetic and isotherm studies showed that the adsorption process conformed to the pseudo-second-order, intra-particle diffusion and Langmuir models. Adsorption temperatures have less effect to the adsorption performance of the modified adsorbent. Electrostatic ion-dipole interaction between protonated amines of PEI and negative charged sites of lac dye was the main proposed mechanism. Good resistance of color changes for ABF-<i>e</i>-PEI was confirmed by the color-fastness assessment (grade 4–5), suggesting efficient method of PEI-immobilizing using ECH crosslinker. The binding reaction of between amine groups of PEI and hydroxyl groups of the cellulosic fiber using ECH crosslinker can be expected to have a broad potential application in dyeing processes or pollution treatments due to its simple, cost-effective, flexible and efficient method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilizing of polyethyleneimine on bamboo viscose fiber using epichlorohydrin crosslinker for enhancing adsorption ability with lac dye\",\"authors\":\"Onanong Cheerarot,&nbsp;Sunan Saikrasun\",\"doi\":\"10.1002/ep.14417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Immobilization of polyethyleneimine (PEI) on bamboo viscose fiber using epichlorohydrin (ECH) crosslinker (ABF-<i>e</i>-PEI) was employed to enhance the ability of dyeing with lac. The results from morphological observation, thermal degradation behavior, Fourier transform infrared (FTIR) analysis, x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) clearly revealed the success of PEI-immobilizing on fiber surface with no significant change in intrinsic properties of the fiber after modification. The modified fiber exhibited fast and efficient adsorption with the adsorption capacity &gt;90 mg/g which was much higher than that of the unmodified adsorbent (did not exceed 10 mg/g). The results from kinetic and isotherm studies showed that the adsorption process conformed to the pseudo-second-order, intra-particle diffusion and Langmuir models. Adsorption temperatures have less effect to the adsorption performance of the modified adsorbent. Electrostatic ion-dipole interaction between protonated amines of PEI and negative charged sites of lac dye was the main proposed mechanism. Good resistance of color changes for ABF-<i>e</i>-PEI was confirmed by the color-fastness assessment (grade 4–5), suggesting efficient method of PEI-immobilizing using ECH crosslinker. The binding reaction of between amine groups of PEI and hydroxyl groups of the cellulosic fiber using ECH crosslinker can be expected to have a broad potential application in dyeing processes or pollution treatments due to its simple, cost-effective, flexible and efficient method.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

利用环氧氯丙烷(ECH)交联剂将聚乙烯亚胺(PEI)固定在竹粘胶纤维上(ABF-e-PEI),以增强其与漆的染色能力。形态学观察、热降解行为、傅立叶变换红外光谱(FTIR)分析、X 射线光电子能谱(XPS)和 X 射线衍射(XRD)等研究结果表明,PEI 在纤维表面的固定非常成功,改性后纤维的内在性能没有发生显著变化。改性后的纤维具有快速高效的吸附能力,吸附量大于 90 mg/g,远高于未改性吸附剂的吸附量(未超过 10 mg/g)。动力学和等温线研究结果表明,吸附过程符合伪二阶、颗粒内扩散和 Langmuir 模型。吸附温度对改性吸附剂的吸附性能影响较小。PEI 的质子化胺与漆染料的负电荷位点之间的静电离子-偶极子相互作用是主要的机理。色牢度评估(4-5 级)证实 ABF-e-PEI 具有良好的抗变色性,这表明使用 ECH 交联剂固定 PEI 是一种有效的方法。利用 ECH 交联剂使 PEI 的胺基与纤维素纤维的羟基发生结合反应的方法简单、经济、灵活、高效,有望在染色工艺或污染处理中得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immobilizing of polyethyleneimine on bamboo viscose fiber using epichlorohydrin crosslinker for enhancing adsorption ability with lac dye

Immobilization of polyethyleneimine (PEI) on bamboo viscose fiber using epichlorohydrin (ECH) crosslinker (ABF-e-PEI) was employed to enhance the ability of dyeing with lac. The results from morphological observation, thermal degradation behavior, Fourier transform infrared (FTIR) analysis, x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) clearly revealed the success of PEI-immobilizing on fiber surface with no significant change in intrinsic properties of the fiber after modification. The modified fiber exhibited fast and efficient adsorption with the adsorption capacity >90 mg/g which was much higher than that of the unmodified adsorbent (did not exceed 10 mg/g). The results from kinetic and isotherm studies showed that the adsorption process conformed to the pseudo-second-order, intra-particle diffusion and Langmuir models. Adsorption temperatures have less effect to the adsorption performance of the modified adsorbent. Electrostatic ion-dipole interaction between protonated amines of PEI and negative charged sites of lac dye was the main proposed mechanism. Good resistance of color changes for ABF-e-PEI was confirmed by the color-fastness assessment (grade 4–5), suggesting efficient method of PEI-immobilizing using ECH crosslinker. The binding reaction of between amine groups of PEI and hydroxyl groups of the cellulosic fiber using ECH crosslinker can be expected to have a broad potential application in dyeing processes or pollution treatments due to its simple, cost-effective, flexible and efficient method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信