探索从数据和知识中学习的语言建模替代方法

Yuxin Zi, Kaushik Roy, Vignesh Narayanan, Amit Sheth
{"title":"探索从数据和知识中学习的语言建模替代方法","authors":"Yuxin Zi, Kaushik Roy, Vignesh Narayanan, Amit Sheth","doi":"10.1609/aaaiss.v3i1.31211","DOIUrl":null,"url":null,"abstract":"Despite their extensive application in language understanding tasks, large language models (LLMs) still encounter challenges including hallucinations - occasional fabrication of information - and alignment issues - lack of associations with human-curated world models (e.g., intuitive physics or common-sense knowledge). Moreover, the black-box nature of LLMs presents significant obstacles in training them effectively to achieve desired behaviors. In particular, modifying the concept embedding spaces of LLMs can be highly intractable. This process involves analyzing the implicit impact of such adjustments on the myriad parameters within LLMs and the resulting inductive biases. We propose a novel architecture that wraps powerful function approximation architectures within an outer, interpretable read-out layer. This read-out layer can be scrutinized to explicitly observe the effects of concept modeling during the training of the LLM. Our method stands in contrast with gradient-based implicit mechanisms, which depend solely on adjustments to the LLM parameters and thus evade scrutiny. By conducting extensive experiments across both generative and discriminative language modeling tasks, we evaluate the capabilities of our proposed architecture relative to state-of-the-art LLMs of similar sizes. Additionally, we offer a qualitative examination of the interpretable read-out layer and visualize the concepts it captures. The results demonstrate the potential of our approach for effectively controlling LLM hallucinations and enhancing the alignment with human expectations.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Alternative Approaches to Language Modeling for Learning from Data and Knowledge\",\"authors\":\"Yuxin Zi, Kaushik Roy, Vignesh Narayanan, Amit Sheth\",\"doi\":\"10.1609/aaaiss.v3i1.31211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their extensive application in language understanding tasks, large language models (LLMs) still encounter challenges including hallucinations - occasional fabrication of information - and alignment issues - lack of associations with human-curated world models (e.g., intuitive physics or common-sense knowledge). Moreover, the black-box nature of LLMs presents significant obstacles in training them effectively to achieve desired behaviors. In particular, modifying the concept embedding spaces of LLMs can be highly intractable. This process involves analyzing the implicit impact of such adjustments on the myriad parameters within LLMs and the resulting inductive biases. We propose a novel architecture that wraps powerful function approximation architectures within an outer, interpretable read-out layer. This read-out layer can be scrutinized to explicitly observe the effects of concept modeling during the training of the LLM. Our method stands in contrast with gradient-based implicit mechanisms, which depend solely on adjustments to the LLM parameters and thus evade scrutiny. By conducting extensive experiments across both generative and discriminative language modeling tasks, we evaluate the capabilities of our proposed architecture relative to state-of-the-art LLMs of similar sizes. Additionally, we offer a qualitative examination of the interpretable read-out layer and visualize the concepts it captures. The results demonstrate the potential of our approach for effectively controlling LLM hallucinations and enhancing the alignment with human expectations.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管大型语言模型(LLMs)在语言理解任务中得到了广泛应用,但它们仍然面临着各种挑战,其中包括幻觉--偶尔编造信息,以及对齐问题--与人类设定的世界模型(如直观物理或常识性知识)缺乏关联。此外,LLMs 的黑箱性质也给有效训练它们以实现理想行为带来了巨大障碍。特别是,修改 LLM 的概念嵌入空间可能非常困难。这一过程涉及分析此类调整对 LLM 内无数参数的隐含影响以及由此产生的归纳偏差。我们提出了一种新颖的架构,将功能强大的函数近似架构封装在一个可解释的外层读出层中。在 LLM 的训练过程中,可以通过仔细检查读出层来明确观察概念建模的效果。我们的方法与基于梯度的隐式机制形成了鲜明对比,后者完全依赖于对 LLM 参数的调整,因此无法进行仔细检查。通过在生成性和鉴别性语言建模任务中进行广泛的实验,我们评估了我们提出的架构相对于类似规模的最先进 LLM 的能力。此外,我们还对可解释读出层进行了定性检查,并对其捕捉的概念进行了可视化。结果表明,我们的方法具有有效控制 LLM 幻觉和增强与人类期望一致性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Alternative Approaches to Language Modeling for Learning from Data and Knowledge
Despite their extensive application in language understanding tasks, large language models (LLMs) still encounter challenges including hallucinations - occasional fabrication of information - and alignment issues - lack of associations with human-curated world models (e.g., intuitive physics or common-sense knowledge). Moreover, the black-box nature of LLMs presents significant obstacles in training them effectively to achieve desired behaviors. In particular, modifying the concept embedding spaces of LLMs can be highly intractable. This process involves analyzing the implicit impact of such adjustments on the myriad parameters within LLMs and the resulting inductive biases. We propose a novel architecture that wraps powerful function approximation architectures within an outer, interpretable read-out layer. This read-out layer can be scrutinized to explicitly observe the effects of concept modeling during the training of the LLM. Our method stands in contrast with gradient-based implicit mechanisms, which depend solely on adjustments to the LLM parameters and thus evade scrutiny. By conducting extensive experiments across both generative and discriminative language modeling tasks, we evaluate the capabilities of our proposed architecture relative to state-of-the-art LLMs of similar sizes. Additionally, we offer a qualitative examination of the interpretable read-out layer and visualize the concepts it captures. The results demonstrate the potential of our approach for effectively controlling LLM hallucinations and enhancing the alignment with human expectations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信