季节性对基孔肯雅病毒动态影响的数学分析

IF 0.7 Q2 MATHEMATICS
Hanan Almuashi
{"title":"季节性对基孔肯雅病毒动态影响的数学分析","authors":"Hanan Almuashi","doi":"10.28924/2291-8639-22-2024-86","DOIUrl":null,"url":null,"abstract":"In this article, we discuss a mathematical system modelling Chikungunya virus dynamics in a seasonal environment with general incidence rates. We establish the existence, uniqueness, positivity and boundedness of a periodic orbit. We show that the global dynamics is determined using the basic reproduction number denoted by R0 and calculated using the spectral radius of a linear integral operator. We show the global stability of the disease free periodic solution if R0<1 and we show also the persistence of the disease if R0>1 where the trajectories converge to a periodic orbit. Finally, we display some numerical examples confirming the theoretical findings.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Analysis for the Influence of Seasonality on Chikungunya Virus Dynamics\",\"authors\":\"Hanan Almuashi\",\"doi\":\"10.28924/2291-8639-22-2024-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we discuss a mathematical system modelling Chikungunya virus dynamics in a seasonal environment with general incidence rates. We establish the existence, uniqueness, positivity and boundedness of a periodic orbit. We show that the global dynamics is determined using the basic reproduction number denoted by R0 and calculated using the spectral radius of a linear integral operator. We show the global stability of the disease free periodic solution if R0<1 and we show also the persistence of the disease if R0>1 where the trajectories converge to a periodic orbit. Finally, we display some numerical examples confirming the theoretical findings.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-22-2024-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-22-2024-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了一个模拟基孔肯雅病毒在具有一般发病率的季节性环境中动态变化的数学系统。我们确定了周期轨道的存在性、唯一性、实在性和有界性。我们表明,全局动态是由基本繁殖数(用 R0 表示)决定的,并通过线性积分算子的谱半径计算得出。如果 R01 的轨迹收敛到周期轨道,我们将展示无病周期解的全局稳定性。最后,我们展示了一些证实理论发现的数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Analysis for the Influence of Seasonality on Chikungunya Virus Dynamics
In this article, we discuss a mathematical system modelling Chikungunya virus dynamics in a seasonal environment with general incidence rates. We establish the existence, uniqueness, positivity and boundedness of a periodic orbit. We show that the global dynamics is determined using the basic reproduction number denoted by R0 and calculated using the spectral radius of a linear integral operator. We show the global stability of the disease free periodic solution if R0<1 and we show also the persistence of the disease if R0>1 where the trajectories converge to a periodic orbit. Finally, we display some numerical examples confirming the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信