用 RIL 群体绘制无头大白菜叶形和叶片大小的遗传图谱

IF 3.1 3区 农林科学 Q1 HORTICULTURE
Tianzi Zhao, Aimei Bai, Xinya Wang, Feixue Zhang, Miaomiao Yang, Yuhui Wang, Tongkun Liu, Xilin Hou, Ying Li
{"title":"用 RIL 群体绘制无头大白菜叶形和叶片大小的遗传图谱","authors":"Tianzi Zhao, Aimei Bai, Xinya Wang, Feixue Zhang, Miaomiao Yang, Yuhui Wang, Tongkun Liu, Xilin Hou, Ying Li","doi":"10.3390/horticulturae10050529","DOIUrl":null,"url":null,"abstract":"Leaves are the predominant photosynthetic and edible organs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis, NHCC), contributing significantly to yield, appearance, and desirability to consumers. However, the genetic basis of leaf shape and size in non-heading Chinese cabbage remains unclear. In this study, we developed a RIL population using ‘Maertou’, with slender leaves and narrow petioles, and ‘Suzhouqing’, with oval leaves and wide petioles, to construct a genetic linkage map and detect QTLs. To obtain stable and reliable QTLs, the 11 leaf-related traits, including the leaf length, leaf width, and fresh weight of the lamina and petiole and the thickness of petiole was observed on two locations—while the leaf shape, petiole shape, index of lamina/petiole length, and index of petiole fresh weight were calculated based on 7 leaf-related traits. QTL mapping illustrated that a total of 27 QTLs for leaf-related traits were preliminarily detected. The candidate genes were annotated and several genes involved in leaf development and leaf shape appeared in the overlapping regions of multiple loci, such as KRP2, GRF4, ARGOS, and SAUR9. This study lays the foundation for further exploration of the genetic mechanisms and development of effective molecular markers for leaf shape and size in NHCC.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Mapping for Leaf Shape and Leaf Size in Non-Heading Chinese Cabbage by a RIL Population\",\"authors\":\"Tianzi Zhao, Aimei Bai, Xinya Wang, Feixue Zhang, Miaomiao Yang, Yuhui Wang, Tongkun Liu, Xilin Hou, Ying Li\",\"doi\":\"10.3390/horticulturae10050529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leaves are the predominant photosynthetic and edible organs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis, NHCC), contributing significantly to yield, appearance, and desirability to consumers. However, the genetic basis of leaf shape and size in non-heading Chinese cabbage remains unclear. In this study, we developed a RIL population using ‘Maertou’, with slender leaves and narrow petioles, and ‘Suzhouqing’, with oval leaves and wide petioles, to construct a genetic linkage map and detect QTLs. To obtain stable and reliable QTLs, the 11 leaf-related traits, including the leaf length, leaf width, and fresh weight of the lamina and petiole and the thickness of petiole was observed on two locations—while the leaf shape, petiole shape, index of lamina/petiole length, and index of petiole fresh weight were calculated based on 7 leaf-related traits. QTL mapping illustrated that a total of 27 QTLs for leaf-related traits were preliminarily detected. The candidate genes were annotated and several genes involved in leaf development and leaf shape appeared in the overlapping regions of multiple loci, such as KRP2, GRF4, ARGOS, and SAUR9. This study lays the foundation for further exploration of the genetic mechanisms and development of effective molecular markers for leaf shape and size in NHCC.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10050529\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10050529","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

叶片是不发头大白菜(Brassica campestris ssp. chinensis, NHCC)的主要光合作用器官和食用器官,对产量、外观和消费者的喜爱程度有很大的影响。然而,不抽头大白菜叶片形状和大小的遗传基础仍不清楚。在本研究中,我们利用叶片细长、叶柄窄的 "漩头 "和叶片椭圆、叶柄宽的 "苏州青 "培育了一个RIL群体,构建遗传连锁图谱并检测QTLs。为了获得稳定可靠的 QTLs,在两个地点观察了 11 个与叶相关的性状,包括叶长、叶宽、叶片和叶柄的鲜重以及叶柄的厚度,同时根据 7 个与叶相关的性状计算了叶形、叶柄形状、叶片/叶柄长度指数和叶柄鲜重指数。QTL图谱显示,初步检测到与叶相关的性状共有27个QTL。对候选基因进行了注释,在多个基因位点的重叠区出现了多个与叶片发育和叶形有关的基因,如 KRP2、GRF4、ARGOS 和 SAUR9。这项研究为进一步探索 NHCC 叶片形状和大小的遗传机制和开发有效的分子标记奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Mapping for Leaf Shape and Leaf Size in Non-Heading Chinese Cabbage by a RIL Population
Leaves are the predominant photosynthetic and edible organs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis, NHCC), contributing significantly to yield, appearance, and desirability to consumers. However, the genetic basis of leaf shape and size in non-heading Chinese cabbage remains unclear. In this study, we developed a RIL population using ‘Maertou’, with slender leaves and narrow petioles, and ‘Suzhouqing’, with oval leaves and wide petioles, to construct a genetic linkage map and detect QTLs. To obtain stable and reliable QTLs, the 11 leaf-related traits, including the leaf length, leaf width, and fresh weight of the lamina and petiole and the thickness of petiole was observed on two locations—while the leaf shape, petiole shape, index of lamina/petiole length, and index of petiole fresh weight were calculated based on 7 leaf-related traits. QTL mapping illustrated that a total of 27 QTLs for leaf-related traits were preliminarily detected. The candidate genes were annotated and several genes involved in leaf development and leaf shape appeared in the overlapping regions of multiple loci, such as KRP2, GRF4, ARGOS, and SAUR9. This study lays the foundation for further exploration of the genetic mechanisms and development of effective molecular markers for leaf shape and size in NHCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulturae
Horticulturae HORTICULTURE-
CiteScore
3.50
自引率
19.40%
发文量
998
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信