Jorge Luis Fernandez Davila, Dominique Longin, Emiliano Lorini, Frédéric Maris
{"title":"对话式代理基于逻辑的认知规划","authors":"Jorge Luis Fernandez Davila, Dominique Longin, Emiliano Lorini, Frédéric Maris","doi":"10.1007/s10458-024-09646-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel approach to cognitive planning based on an NP-complete logic of explicit and implicit belief whose satisfiability checking problem is reduced to SAT. We illustrate the potential for application of our model by formalizing and then implementing a human–machine interaction scenario in which an artificial agent interacts with a human agent through dialogue and tries to motivate her to practice a sport. To make persuasion effective, the artificial agent needs a model of the human’s beliefs and desires which is built during interaction through a sequence of belief revision operations. We consider two cognitive planning algorithms and compare their performances, a brute force algorithm based on SAT and a QBF-based algorithm.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"38 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logic-based cognitive planning for conversational agents\",\"authors\":\"Jorge Luis Fernandez Davila, Dominique Longin, Emiliano Lorini, Frédéric Maris\",\"doi\":\"10.1007/s10458-024-09646-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel approach to cognitive planning based on an NP-complete logic of explicit and implicit belief whose satisfiability checking problem is reduced to SAT. We illustrate the potential for application of our model by formalizing and then implementing a human–machine interaction scenario in which an artificial agent interacts with a human agent through dialogue and tries to motivate her to practice a sport. To make persuasion effective, the artificial agent needs a model of the human’s beliefs and desires which is built during interaction through a sequence of belief revision operations. We consider two cognitive planning algorithms and compare their performances, a brute force algorithm based on SAT and a QBF-based algorithm.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-024-09646-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-024-09646-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种新颖的认知规划方法,该方法基于显式和隐式信念的 NP 完备逻辑,其可满足性检查问题被简化为 SAT。我们通过形式化并实现一个人机交互场景来说明我们的模型的应用潜力。在这个场景中,人工代理通过对话与人类代理互动,并试图激励她练习一项运动。为了有效地进行说服,人工代理需要一个人类信念和愿望的模型,该模型是在互动过程中通过一系列信念修正操作建立起来的。我们考虑了两种认知规划算法并比较了它们的性能,一种是基于 SAT 的蛮力算法,另一种是基于 QBF 的算法。
Logic-based cognitive planning for conversational agents
This paper presents a novel approach to cognitive planning based on an NP-complete logic of explicit and implicit belief whose satisfiability checking problem is reduced to SAT. We illustrate the potential for application of our model by formalizing and then implementing a human–machine interaction scenario in which an artificial agent interacts with a human agent through dialogue and tries to motivate her to practice a sport. To make persuasion effective, the artificial agent needs a model of the human’s beliefs and desires which is built during interaction through a sequence of belief revision operations. We consider two cognitive planning algorithms and compare their performances, a brute force algorithm based on SAT and a QBF-based algorithm.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.