{"title":"软件无线电实时强化学习决策引擎的联合学习和边缘部署框架","authors":"Jithin Jagannath","doi":"10.1609/aaaiss.v3i1.31218","DOIUrl":null,"url":null,"abstract":"Machine learning promises to empower dynamic resource allocation requirements of Next Generation (NextG) wireless networks including 6G and tactical networks. Recently, we have seen the impact machine learning can make on various aspects of wireless networks. Yet, in most cases, the progress has been limited to simulations and/or relies on large processing units to run the decision engines as opposed to deploying it on the radio at the edge. While relying on simulations for rapid and efficient training of deep reinforcement learning (DRL) may be necessary, it is key to mitigate the sim-real gap while trying to improve the generalization capability. To mitigate these challenges, we developed the Marconi-Rosenblatt Framework for Intelligent Networks (MR-iNet Gym), an open-source architecture designed for accelerating the deployment of novel DRL for NextG wireless networks. To demonstrate its impact, we tackled the problem of distributed frequency and power allocation while emphasizing the generalization capability of DRL decision engine. The end-to-end solution was implemented on the GPU-embedded software-defined radio and validated using over-the-air evaluation. To the best of our knowledge, these were the first instances that established the feasibility of deploying DRL for optimized distributed resource allocation for next-generation of GPU-embedded radios.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"76 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Framework for Federated Learning and Edge Deployment of Real-Time Reinforcement Learning Decision Engine on Software Defined Radio\",\"authors\":\"Jithin Jagannath\",\"doi\":\"10.1609/aaaiss.v3i1.31218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning promises to empower dynamic resource allocation requirements of Next Generation (NextG) wireless networks including 6G and tactical networks. Recently, we have seen the impact machine learning can make on various aspects of wireless networks. Yet, in most cases, the progress has been limited to simulations and/or relies on large processing units to run the decision engines as opposed to deploying it on the radio at the edge. While relying on simulations for rapid and efficient training of deep reinforcement learning (DRL) may be necessary, it is key to mitigate the sim-real gap while trying to improve the generalization capability. To mitigate these challenges, we developed the Marconi-Rosenblatt Framework for Intelligent Networks (MR-iNet Gym), an open-source architecture designed for accelerating the deployment of novel DRL for NextG wireless networks. To demonstrate its impact, we tackled the problem of distributed frequency and power allocation while emphasizing the generalization capability of DRL decision engine. The end-to-end solution was implemented on the GPU-embedded software-defined radio and validated using over-the-air evaluation. To the best of our knowledge, these were the first instances that established the feasibility of deploying DRL for optimized distributed resource allocation for next-generation of GPU-embedded radios.\",\"PeriodicalId\":516827,\"journal\":{\"name\":\"Proceedings of the AAAI Symposium Series\",\"volume\":\"76 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Symposium Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaaiss.v3i1.31218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Framework for Federated Learning and Edge Deployment of Real-Time Reinforcement Learning Decision Engine on Software Defined Radio
Machine learning promises to empower dynamic resource allocation requirements of Next Generation (NextG) wireless networks including 6G and tactical networks. Recently, we have seen the impact machine learning can make on various aspects of wireless networks. Yet, in most cases, the progress has been limited to simulations and/or relies on large processing units to run the decision engines as opposed to deploying it on the radio at the edge. While relying on simulations for rapid and efficient training of deep reinforcement learning (DRL) may be necessary, it is key to mitigate the sim-real gap while trying to improve the generalization capability. To mitigate these challenges, we developed the Marconi-Rosenblatt Framework for Intelligent Networks (MR-iNet Gym), an open-source architecture designed for accelerating the deployment of novel DRL for NextG wireless networks. To demonstrate its impact, we tackled the problem of distributed frequency and power allocation while emphasizing the generalization capability of DRL decision engine. The end-to-end solution was implemented on the GPU-embedded software-defined radio and validated using over-the-air evaluation. To the best of our knowledge, these were the first instances that established the feasibility of deploying DRL for optimized distributed resource allocation for next-generation of GPU-embedded radios.