紧凑空间形式上无限多非收缩闭合大地线的一般存在性

IF 0.8 3区 数学 Q2 MATHEMATICS
Hui Liu, Yu Chen Wang
{"title":"紧凑空间形式上无限多非收缩闭合大地线的一般存在性","authors":"Hui Liu,&nbsp;Yu Chen Wang","doi":"10.1007/s10114-024-3009-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>M</i> = <i>S</i><sup><i>n</i></sup> /Γ and <i>h</i> be a nontrivial element of finite order <i>p</i> in <i>π</i><sub>1</sub>(<i>Μ</i>), where the integers <i>n</i>, <i>p</i> ≥ 2, Γ is a finite abelian group which acts freely and isometrically on the <i>n</i>-sphere and therefore <i>M</i> is diffeomorphic to a compact space form. In this paper, we prove that there are infinitely many non-contractible closed geodesics of class [<i>h</i>] on the compact space form with <i>C</i><sup><i>r</i></sup>-generic Finsler metrics, where 4 ≤ <i>r</i> ≤ ∞. The conclusion also holds for <i>C</i><sup><i>r</i></sup>-generic Riemannian metrics for 2 ≤ <i>r</i> ≤ ∞. The proof is based on the resonance identity of non-contractible closed geodesics on compact space forms.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 7","pages":"1674 - 1684"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generic Existence of Infinitely Many Non-contractible Closed Geodesics on Compact Space Forms\",\"authors\":\"Hui Liu,&nbsp;Yu Chen Wang\",\"doi\":\"10.1007/s10114-024-3009-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>M</i> = <i>S</i><sup><i>n</i></sup> /Γ and <i>h</i> be a nontrivial element of finite order <i>p</i> in <i>π</i><sub>1</sub>(<i>Μ</i>), where the integers <i>n</i>, <i>p</i> ≥ 2, Γ is a finite abelian group which acts freely and isometrically on the <i>n</i>-sphere and therefore <i>M</i> is diffeomorphic to a compact space form. In this paper, we prove that there are infinitely many non-contractible closed geodesics of class [<i>h</i>] on the compact space form with <i>C</i><sup><i>r</i></sup>-generic Finsler metrics, where 4 ≤ <i>r</i> ≤ ∞. The conclusion also holds for <i>C</i><sup><i>r</i></sup>-generic Riemannian metrics for 2 ≤ <i>r</i> ≤ ∞. The proof is based on the resonance identity of non-contractible closed geodesics on compact space forms.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 7\",\"pages\":\"1674 - 1684\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-3009-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-3009-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 M = Sn /Γ,h 是 π1(Μ)中有限阶 p 的非琐元,其中整数 n,p ≥ 2,Γ 是一个有限无边群,它自由且等距地作用于 n 球面,因此 M 与紧凑空间形式是差分同构的。在本文中,我们证明了在紧凑空间形式上存在无穷多类 [h] 的不可收缩闭合大地线,且具有 Cr-generic Finsler 度量,其中 4 ≤ r ≤ ∞。在 2 ≤ r ≤ ∞ 的情况下,结论同样适用于 Cr-通用黎曼度量。证明基于紧凑空间形式上不可收缩闭合大地线的共振特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic Existence of Infinitely Many Non-contractible Closed Geodesics on Compact Space Forms

Let M = Sn /Γ and h be a nontrivial element of finite order p in π1(Μ), where the integers n, p ≥ 2, Γ is a finite abelian group which acts freely and isometrically on the n-sphere and therefore M is diffeomorphic to a compact space form. In this paper, we prove that there are infinitely many non-contractible closed geodesics of class [h] on the compact space form with Cr-generic Finsler metrics, where 4 ≤ r ≤ ∞. The conclusion also holds for Cr-generic Riemannian metrics for 2 ≤ r ≤ ∞. The proof is based on the resonance identity of non-contractible closed geodesics on compact space forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信