{"title":"论瑞利-泰勒不稳定性对火星中间层尘云形成的影响","authors":"Yu. S. Reznichenko, A. Yu. Dubinskii, S. I. Popel","doi":"10.1134/S0038094624700187","DOIUrl":null,"url":null,"abstract":"<p>A theoretical model is presented that describes the settling regime of plasma-dust clouds in the mesosphere of Mars. The values of the characteristic sizes of cloud dust particles predicted by the model are calculated. It is shown that an important factor influencing the formation of plasma-dust structures in the Martian atmosphere is the Rayleigh–Taylor instability, which limits (from above) the permissible sizes of dust particles in the cloud.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"58 3","pages":"263 - 268"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Influence of the Rayleigh–Taylor Instability on the Formation of Dust Clouds in the Mesosphere of Mars\",\"authors\":\"Yu. S. Reznichenko, A. Yu. Dubinskii, S. I. Popel\",\"doi\":\"10.1134/S0038094624700187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A theoretical model is presented that describes the settling regime of plasma-dust clouds in the mesosphere of Mars. The values of the characteristic sizes of cloud dust particles predicted by the model are calculated. It is shown that an important factor influencing the formation of plasma-dust structures in the Martian atmosphere is the Rayleigh–Taylor instability, which limits (from above) the permissible sizes of dust particles in the cloud.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":\"58 3\",\"pages\":\"263 - 268\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0038094624700187\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0038094624700187","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On the Influence of the Rayleigh–Taylor Instability on the Formation of Dust Clouds in the Mesosphere of Mars
A theoretical model is presented that describes the settling regime of plasma-dust clouds in the mesosphere of Mars. The values of the characteristic sizes of cloud dust particles predicted by the model are calculated. It is shown that an important factor influencing the formation of plasma-dust structures in the Martian atmosphere is the Rayleigh–Taylor instability, which limits (from above) the permissible sizes of dust particles in the cloud.
期刊介绍:
Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.