Adil A. M. Omara, Omer Elfarouk E. Mohamed, Abubaker A. M. Mohammedali, Mustafa Ahmed Khogley Ahmed
{"title":"十种不同物理参数对太阳能蒸发器生产率的影响:理论建模","authors":"Adil A. M. Omara, Omer Elfarouk E. Mohamed, Abubaker A. M. Mohammedali, Mustafa Ahmed Khogley Ahmed","doi":"10.1002/ep.14416","DOIUrl":null,"url":null,"abstract":"<p>Solar distillation using solar stills is widely recognized as a clean and cost-effective method for producing freshwater. However, due to its straightforward design, solar still performance is greatly influenced by various physical characteristics. Many researches have evaluated solar still parameters, while only a few articles have concerned physical ones. Therefore, this article aims to investigate the effect of different physical parameters on solar still productivity through thermal modeling. The theoretical results were validated with those of a previous experimental model, showing a good agreement with each other. The results reveal that daily productivity experiences significant improvement with an increase in plate emissivity or insulation thickness. Conversely, an increase in water mass, glass absorptivity or insulation thermal conductivity leads to a substantial reduction in productivity. Notably, water transmissivity and plate absorptivity do not affect productivity. Modest enhancements in productivity can be achieved by reducing the effective emissivity between water and glass. While the initial temperature of water has a minor impact on productivity at low water mass, it exhibits a substantial improvement effect at high water mass. These results can be a good guidance for the designers and manufacturers to develop more efficient designs that maximize the production of clean water.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ten different physical parameters on solar still productivity: Theoretical modeling\",\"authors\":\"Adil A. M. Omara, Omer Elfarouk E. Mohamed, Abubaker A. M. Mohammedali, Mustafa Ahmed Khogley Ahmed\",\"doi\":\"10.1002/ep.14416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solar distillation using solar stills is widely recognized as a clean and cost-effective method for producing freshwater. However, due to its straightforward design, solar still performance is greatly influenced by various physical characteristics. Many researches have evaluated solar still parameters, while only a few articles have concerned physical ones. Therefore, this article aims to investigate the effect of different physical parameters on solar still productivity through thermal modeling. The theoretical results were validated with those of a previous experimental model, showing a good agreement with each other. The results reveal that daily productivity experiences significant improvement with an increase in plate emissivity or insulation thickness. Conversely, an increase in water mass, glass absorptivity or insulation thermal conductivity leads to a substantial reduction in productivity. Notably, water transmissivity and plate absorptivity do not affect productivity. Modest enhancements in productivity can be achieved by reducing the effective emissivity between water and glass. While the initial temperature of water has a minor impact on productivity at low water mass, it exhibits a substantial improvement effect at high water mass. These results can be a good guidance for the designers and manufacturers to develop more efficient designs that maximize the production of clean water.</p>\",\"PeriodicalId\":11701,\"journal\":{\"name\":\"Environmental Progress & Sustainable Energy\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Progress & Sustainable Energy\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14416\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14416","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of ten different physical parameters on solar still productivity: Theoretical modeling
Solar distillation using solar stills is widely recognized as a clean and cost-effective method for producing freshwater. However, due to its straightforward design, solar still performance is greatly influenced by various physical characteristics. Many researches have evaluated solar still parameters, while only a few articles have concerned physical ones. Therefore, this article aims to investigate the effect of different physical parameters on solar still productivity through thermal modeling. The theoretical results were validated with those of a previous experimental model, showing a good agreement with each other. The results reveal that daily productivity experiences significant improvement with an increase in plate emissivity or insulation thickness. Conversely, an increase in water mass, glass absorptivity or insulation thermal conductivity leads to a substantial reduction in productivity. Notably, water transmissivity and plate absorptivity do not affect productivity. Modest enhancements in productivity can be achieved by reducing the effective emissivity between water and glass. While the initial temperature of water has a minor impact on productivity at low water mass, it exhibits a substantial improvement effect at high water mass. These results can be a good guidance for the designers and manufacturers to develop more efficient designs that maximize the production of clean water.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.