{"title":"C1,α 平面等距沉浸的几何形状","authors":"Camillo De Lellis, M. R. Pakzad","doi":"10.1017/prm.2024.55","DOIUrl":null,"url":null,"abstract":"We show that any isometric immersion of a flat plane domain into \n \n ${\\mathbb {R}}^3$\n \n \n is developable provided it enjoys the little Hölder regularity \n \n $c^{1,2/3}$\n \n \n . In particular, isometric immersions of local \n \n $C^{1,\\alpha }$\n \n \n regularity with \n \n $\\alpha >2/3$\n \n \n belong to this class. The proof is based on the existence of a weak notion of second fundamental form for such immersions, the analysis of the Gauss–Codazzi–Mainardi equations in this weak setting, and a parallel result on the very weak solutions to the degenerate Monge–Ampère equation analysed in [M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695–727.].","PeriodicalId":517305,"journal":{"name":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","volume":"15 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The geometry of C1,α flat isometric immersions\",\"authors\":\"Camillo De Lellis, M. R. Pakzad\",\"doi\":\"10.1017/prm.2024.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any isometric immersion of a flat plane domain into \\n \\n ${\\\\mathbb {R}}^3$\\n \\n \\n is developable provided it enjoys the little Hölder regularity \\n \\n $c^{1,2/3}$\\n \\n \\n . In particular, isometric immersions of local \\n \\n $C^{1,\\\\alpha }$\\n \\n \\n regularity with \\n \\n $\\\\alpha >2/3$\\n \\n \\n belong to this class. The proof is based on the existence of a weak notion of second fundamental form for such immersions, the analysis of the Gauss–Codazzi–Mainardi equations in this weak setting, and a parallel result on the very weak solutions to the degenerate Monge–Ampère equation analysed in [M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695–727.].\",\"PeriodicalId\":517305,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh: Section A Mathematics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh: Section A Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/prm.2024.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
我们证明,平面域的任何等距浸入${mathbb {R}}^3$ 都是可展开的,只要它具有小霍尔德正则性$c^{1,2/3}$。特别地,局部$C^{1,\alpha }$ 正则性的等距浸入且$\alpha >2/3$属于这一类。证明的基础是这类浸入的第二基本形式的弱概念的存在、在这种弱设置下对高斯-科达兹-马纳尔迪方程的分析,以及[M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695-727.] 中分析的退化蒙日-安培方程的极弱解的平行结果。
We show that any isometric immersion of a flat plane domain into
${\mathbb {R}}^3$
is developable provided it enjoys the little Hölder regularity
$c^{1,2/3}$
. In particular, isometric immersions of local
$C^{1,\alpha }$
regularity with
$\alpha >2/3$
belong to this class. The proof is based on the existence of a weak notion of second fundamental form for such immersions, the analysis of the Gauss–Codazzi–Mainardi equations in this weak setting, and a parallel result on the very weak solutions to the degenerate Monge–Ampère equation analysed in [M. Lewicka and M. R. Pakzad. Anal. PDE 10 (2017), 695–727.].