{"title":"关于近似凸函数的一个子类","authors":"Prachi Prajna Dash, J. K. Prajapat","doi":"10.1142/s1793557124500608","DOIUrl":null,"url":null,"abstract":"We note that the class K(O, 0, 0, 0) constitutes a subclass introduced by Bazilevic [3J of the class of close-to-convex functions with the classical normalization. In this note we give a useful representation formula for members of S(p, iP) and we determine the sharp radius of convexity for the functions fez) EK()., a, (3, iP). Finally we establish the sharp upper bound and lower bound of 11'(z) I if fez) EK()., a, (3, iP).","PeriodicalId":0,"journal":{"name":"","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On a subclass of close-to-convex functions\",\"authors\":\"Prachi Prajna Dash, J. K. Prajapat\",\"doi\":\"10.1142/s1793557124500608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We note that the class K(O, 0, 0, 0) constitutes a subclass introduced by Bazilevic [3J of the class of close-to-convex functions with the classical normalization. In this note we give a useful representation formula for members of S(p, iP) and we determine the sharp radius of convexity for the functions fez) EK()., a, (3, iP). Finally we establish the sharp upper bound and lower bound of 11'(z) I if fez) EK()., a, (3, iP).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":\"2 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793557124500608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793557124500608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
我们注意到 K(O,0,0,0)类是巴齐列维奇[3J]引入的经典归一化近凸函数类的一个子类。在本说明中,我们给出了 S(p, iP) 成员的有用表示公式,并确定了函数 fez) EK()., a, (3, iP) 的尖锐凸半径。最后,我们建立了 11'(z) I 的尖锐上界和下界,如果 fez) EK()., a, (3, iP)。
We note that the class K(O, 0, 0, 0) constitutes a subclass introduced by Bazilevic [3J of the class of close-to-convex functions with the classical normalization. In this note we give a useful representation formula for members of S(p, iP) and we determine the sharp radius of convexity for the functions fez) EK()., a, (3, iP). Finally we establish the sharp upper bound and lower bound of 11'(z) I if fez) EK()., a, (3, iP).