失焦 L2- 分析扭转形式的 Cheeger-Müller 定理

IF 0.8 3区 数学 Q2 MATHEMATICS
Guo Lin An
{"title":"失焦 L2- 分析扭转形式的 Cheeger-Müller 定理","authors":"Guo Lin An","doi":"10.1007/s10114-024-2287-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we define the delocalized <i>L</i><sup>2</sup>-analytic torsion form and the delocalized <i>L</i><sup>2</sup>-combinatorial torsion form. By using the method of Bismut-Goette, under the conditions of positive Novikov-Shubin invariants, nontrivial finite conjugacy class and the existence of a family of fiberwise Morse functions whose gradient fields satisfy the Thom-Smale transversality condition in every fiber, we prove the Cheeger-Müller type relation between the delocalized <i>L</i><sup>2</sup>-analytic torsion form and the delocalized <i>L</i><sup>2</sup>-combinatorial torsion form.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 11","pages":"2615 - 2670"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cheeger-Müller Theorem for Delocalized L2-analytic Torsion Form\",\"authors\":\"Guo Lin An\",\"doi\":\"10.1007/s10114-024-2287-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we define the delocalized <i>L</i><sup>2</sup>-analytic torsion form and the delocalized <i>L</i><sup>2</sup>-combinatorial torsion form. By using the method of Bismut-Goette, under the conditions of positive Novikov-Shubin invariants, nontrivial finite conjugacy class and the existence of a family of fiberwise Morse functions whose gradient fields satisfy the Thom-Smale transversality condition in every fiber, we prove the Cheeger-Müller type relation between the delocalized <i>L</i><sup>2</sup>-analytic torsion form and the delocalized <i>L</i><sup>2</sup>-combinatorial torsion form.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 11\",\"pages\":\"2615 - 2670\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2287-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2287-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们定义了脱域 L2-解析扭转形式和脱域 L2-组合扭转形式。通过使用 Bismut-Goette 方法,在正 Novikov-Shubin 不变式、非三角有限共轭类和存在纤维莫尔斯函数族(其梯度场在每个纤维中都满足 Thom-Smale 横向性条件)的条件下,我们证明了脱域 L2 分析扭转形式和脱域 L2 组合扭转形式之间的 Cheeger-Müller 类型关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cheeger-Müller Theorem for Delocalized L2-analytic Torsion Form

In this paper we define the delocalized L2-analytic torsion form and the delocalized L2-combinatorial torsion form. By using the method of Bismut-Goette, under the conditions of positive Novikov-Shubin invariants, nontrivial finite conjugacy class and the existence of a family of fiberwise Morse functions whose gradient fields satisfy the Thom-Smale transversality condition in every fiber, we prove the Cheeger-Müller type relation between the delocalized L2-analytic torsion form and the delocalized L2-combinatorial torsion form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信