{"title":"带治愈率的泊松幂加 Weibull 回归模型的残差分析","authors":"C. R. Fidelis, E. M. Ortega, G. Cordeiro","doi":"10.3390/stats7020030","DOIUrl":null,"url":null,"abstract":"The use of cure-rate survival models has grown in recent years. Even so, proposals to perform the goodness of fit of these models have not been so frequent. However, residual analysis can be used to check the adequacy of a fitted regression model. In this context, we provide Cox–Snell residuals for Poisson-exponentiated Weibull regression with cure fraction. We developed several simulations under different scenarios for studying the distributions of these residuals. They were applied to a melanoma dataset for illustrative purposes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual Analysis for Poisson-Exponentiated Weibull Regression Models with Cure Fraction\",\"authors\":\"C. R. Fidelis, E. M. Ortega, G. Cordeiro\",\"doi\":\"10.3390/stats7020030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of cure-rate survival models has grown in recent years. Even so, proposals to perform the goodness of fit of these models have not been so frequent. However, residual analysis can be used to check the adequacy of a fitted regression model. In this context, we provide Cox–Snell residuals for Poisson-exponentiated Weibull regression with cure fraction. We developed several simulations under different scenarios for studying the distributions of these residuals. They were applied to a melanoma dataset for illustrative purposes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats7020030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats7020030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Residual Analysis for Poisson-Exponentiated Weibull Regression Models with Cure Fraction
The use of cure-rate survival models has grown in recent years. Even so, proposals to perform the goodness of fit of these models have not been so frequent. However, residual analysis can be used to check the adequacy of a fitted regression model. In this context, we provide Cox–Snell residuals for Poisson-exponentiated Weibull regression with cure fraction. We developed several simulations under different scenarios for studying the distributions of these residuals. They were applied to a melanoma dataset for illustrative purposes.