论前希尔伯特和正蕴涵前希尔伯特代数

Q2 Arts and Humanities
Andrzej Walendziak
{"title":"论前希尔伯特和正蕴涵前希尔伯特代数","authors":"Andrzej Walendziak","doi":"10.18778/0138-0680.2024.07","DOIUrl":null,"url":null,"abstract":"In the paper, pre-Hilbert algebras are defined as a generalization of Hilbert algebras (namely, a Hilbert algebra is just a pre-Hilbert algebra satisfying the property of antisymmetry). Pre-Hilbert algebras have been inspired by Henkin's Positive Implicative Logic. Their properties and characterizations are investigated. Some important results and examples are given. Moreover, positive implicative pre-Hilbert algebras are introduced and studied, their connections with some algebras of logic are presented. The hierarchies existing between the classes of algebras considered here are shown.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":"41 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pre-Hilbert and positive implicative pre-Hilbert algebras\",\"authors\":\"Andrzej Walendziak\",\"doi\":\"10.18778/0138-0680.2024.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, pre-Hilbert algebras are defined as a generalization of Hilbert algebras (namely, a Hilbert algebra is just a pre-Hilbert algebra satisfying the property of antisymmetry). Pre-Hilbert algebras have been inspired by Henkin's Positive Implicative Logic. Their properties and characterizations are investigated. Some important results and examples are given. Moreover, positive implicative pre-Hilbert algebras are introduced and studied, their connections with some algebras of logic are presented. The hierarchies existing between the classes of algebras considered here are shown.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\"41 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.2024.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2024.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,前希尔伯特代数被定义为希尔伯特代数的广义化(即希尔伯特代数只是满足反对称性质的前希尔伯特代数)。前希尔伯特代数受到亨金的正隐含逻辑的启发。我们研究了它们的性质和特征。给出了一些重要的结果和例子。此外,还介绍和研究了正蕴涵前希尔伯特代数,并介绍了它们与一些逻辑代数的联系。本文所考虑的各类代数之间存在的等级关系也得到了展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On pre-Hilbert and positive implicative pre-Hilbert algebras
In the paper, pre-Hilbert algebras are defined as a generalization of Hilbert algebras (namely, a Hilbert algebra is just a pre-Hilbert algebra satisfying the property of antisymmetry). Pre-Hilbert algebras have been inspired by Henkin's Positive Implicative Logic. Their properties and characterizations are investigated. Some important results and examples are given. Moreover, positive implicative pre-Hilbert algebras are introduced and studied, their connections with some algebras of logic are presented. The hierarchies existing between the classes of algebras considered here are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Section of Logic
Bulletin of the Section of Logic Arts and Humanities-Philosophy
CiteScore
0.90
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信