针对成对连接关键节点检测问题的伪确定性噪声极值优化算法

Pub Date : 2024-05-20 DOI:10.1093/jigpal/jzae056
Noémi Gaskó, M. Suciu, Rodica Ioana Lung, Tamás Képes
{"title":"针对成对连接关键节点检测问题的伪确定性噪声极值优化算法","authors":"Noémi Gaskó, M. Suciu, Rodica Ioana Lung, Tamás Képes","doi":"10.1093/jigpal/jzae056","DOIUrl":null,"url":null,"abstract":"\n The critical node detection problem is a central task in computational graph theory due to its large applicability, consisting in deleting $k$ nodes to minimize a certain graph measure. In this article, we propose a new Extremal Optimization-based approach, the Pseudo-Deterministic Noisy Extremal Optimization (PDNEO) algorithm, to solve the Critical Node Detection variant in which the pairwise connectivity is minimized. PDNEO uses an adaptive pseudo-deterministic parameter to switch between random nodes and articulation points during the search, as well as other features, such as noise induction to preserve diversity, greedy search to better exploit the search space and a greater search space exploration mechanism. Numerical experiments on synthetic and real-world networks show the effectiveness of the proposed algorithm compared with existing methods.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pseudo-Deterministic Noisy Extremal Optimization algorithm for the pairwise connectivity Critical Node Detection Problem\",\"authors\":\"Noémi Gaskó, M. Suciu, Rodica Ioana Lung, Tamás Képes\",\"doi\":\"10.1093/jigpal/jzae056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The critical node detection problem is a central task in computational graph theory due to its large applicability, consisting in deleting $k$ nodes to minimize a certain graph measure. In this article, we propose a new Extremal Optimization-based approach, the Pseudo-Deterministic Noisy Extremal Optimization (PDNEO) algorithm, to solve the Critical Node Detection variant in which the pairwise connectivity is minimized. PDNEO uses an adaptive pseudo-deterministic parameter to switch between random nodes and articulation points during the search, as well as other features, such as noise induction to preserve diversity, greedy search to better exploit the search space and a greater search space exploration mechanism. Numerical experiments on synthetic and real-world networks show the effectiveness of the proposed algorithm compared with existing methods.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

临界节点检测问题是计算图论中的一项核心任务,因为它具有广泛的适用性,包括删除 $k$ 节点以最小化某个图度量。在本文中,我们提出了一种基于极值优化的新方法--伪确定性噪声极值优化(PDNEO)算法,以解决临界节点检测变体中的成对连通性最小化问题。PDNEO 采用自适应伪确定性参数,在搜索过程中在随机节点和衔接点之间切换,还具有其他特点,如通过噪声诱导保持多样性、通过贪婪搜索更好地利用搜索空间以及更大的搜索空间探索机制。在合成网络和真实世界网络上进行的数值实验表明,与现有方法相比,所提出的算法非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Pseudo-Deterministic Noisy Extremal Optimization algorithm for the pairwise connectivity Critical Node Detection Problem
The critical node detection problem is a central task in computational graph theory due to its large applicability, consisting in deleting $k$ nodes to minimize a certain graph measure. In this article, we propose a new Extremal Optimization-based approach, the Pseudo-Deterministic Noisy Extremal Optimization (PDNEO) algorithm, to solve the Critical Node Detection variant in which the pairwise connectivity is minimized. PDNEO uses an adaptive pseudo-deterministic parameter to switch between random nodes and articulation points during the search, as well as other features, such as noise induction to preserve diversity, greedy search to better exploit the search space and a greater search space exploration mechanism. Numerical experiments on synthetic and real-world networks show the effectiveness of the proposed algorithm compared with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信