压力对硅铁晶体结构和声子态密度的影响

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Ravhi S. Kumar*, Han Liu, Quan Li*, Yuming Xiao, Paul Chow, Yue Meng, Michael Y. Hu, Esen Ercan Alp, Russell J. Hemley, Changfeng Chen, Andrew L. Cornelius and Zachary Fisk, 
{"title":"压力对硅铁晶体结构和声子态密度的影响","authors":"Ravhi S. Kumar*,&nbsp;Han Liu,&nbsp;Quan Li*,&nbsp;Yuming Xiao,&nbsp;Paul Chow,&nbsp;Yue Meng,&nbsp;Michael Y. Hu,&nbsp;Esen Ercan Alp,&nbsp;Russell J. Hemley,&nbsp;Changfeng Chen,&nbsp;Andrew L. Cornelius and Zachary Fisk,&nbsp;","doi":"10.1021/acs.jpcc.4c00626","DOIUrl":null,"url":null,"abstract":"<p >The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"128 21","pages":"8774–8784"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi\",\"authors\":\"Ravhi S. Kumar*,&nbsp;Han Liu,&nbsp;Quan Li*,&nbsp;Yuming Xiao,&nbsp;Paul Chow,&nbsp;Yue Meng,&nbsp;Michael Y. Hu,&nbsp;Esen Ercan Alp,&nbsp;Russell J. Hemley,&nbsp;Changfeng Chen,&nbsp;Andrew L. Cornelius and Zachary Fisk,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c00626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"128 21\",\"pages\":\"8774–8784\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00626\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00626","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

强相关材料硅铁在不同的压力-温度(P-T)条件下显示出几种不同寻常的热、磁和结构特性。它是一种潜在的热电合金,也是一种具有多种地球化学意义的材料,可能是地核-地幔边界(CMB)的一种成分。之前的理论研究预测,在低于 40 GPa 的环境温度下,会出现压力诱导的 B20-B2 转变;然而,在实验中,只有在高 P-T 条件下才能观察到这种结构转变。在这项研究中,我们进行了高达 90 GPa 的高压粉末 X 射线衍射 (XRD) 和高达 120 GPa 的核共振非弹性 X 射线散射 (NRIXS) 测量,以了解相的稳定性和晶格动力学。我们的研究为 36 GPa 左右的非静水压力诱导的 B20-B2 转变提供了证据。我们从高达 120 GPa 的 NRIXS 测量中推导出了铁部分声子态密度 (PDOS) 和热参数,并将其与密度泛函理论 (DFT) 计算结果进行了比较。此外,计算结果还显示了在 12 GPa 左右的压力诱导金属化和带隙关闭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi

Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi

Effect of Pressure on Crystal Structure and Phonon Density of States of FeSi

The strongly correlated material FeSi displays several unusual thermal, magnetic, and structural properties under varying pressure–temperature (P–T) conditions. It is a potential thermoelectric alloy and a material with several geochemical implications as a possible constituent at the Earth’s core-mantle boundary (CMB). Previous theoretical studies predicted a pressure-induced B20–B2 transition at ambient temperature below 40 GPa; however, experimentally, the structural transition is observed only under high P–T conditions. In this study, we have performed high-pressure powder X-ray diffraction (XRD) up to 90 GPa and Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements up to 120 GPa to understand the phase stability and lattice dynamics. Our study provides evidence for a nonhydrostatic stress-induced B20–B2 transition in FeSi at around 36 GPa. We deduced the Fe partial phonon density of states (PDOS) and thermal parameters from NRIXS measurements up to 120 GPa and compared them with density functional theory (DFT) calculations. Additionally, the computations show pressure-induced metallization and band gap closing at around 12 GPa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信