随机森林、XGBoost 和 LightGBM 算法在 Reddit 评论中进行情感分类的比较分析

Nenny Anggraini, S. Putra, Luh Kesuma Wardhani, Farid Dhiya Ul Arif, Nashrul Hakiem, I. Shofi
{"title":"随机森林、XGBoost 和 LightGBM 算法在 Reddit 评论中进行情感分类的比较分析","authors":"Nenny Anggraini, S. Putra, Luh Kesuma Wardhani, Farid Dhiya Ul Arif, Nashrul Hakiem, I. Shofi","doi":"10.15408/jti.v17i1.38651","DOIUrl":null,"url":null,"abstract":"This research aims to compare the performance of three classification algorithms, namely Random Forest, XGBoost, and LightGBM, in classifying emotions in Reddit comments. Emotion classification in Reddit comments is a complex classification problem due to its numerous variations and ambiguities. This research utilizes the GoEmotions Fine-Grained dataset, filtered down to 7,325 Reddit comments with 5 different basic emotion labels. In this study, data preprocessing steps, feature extraction using CountVectorizer and TF-IDF, and hyperparameter tuning using GridSearchCV for each algorithm are conducted. Subsequently, model evaluation is performed using Cross-Validation and confusion matrix. The results of the study indicate that Random Forest outperforms the XGBoost and LightGBM algorithm with an accuracy of 75.38% compared to XGBoost with 69.05% accuracy and LightGBM with 66.63% accuracy.","PeriodicalId":506287,"journal":{"name":"JURNAL TEKNIK INFORMATIKA","volume":"32 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments\",\"authors\":\"Nenny Anggraini, S. Putra, Luh Kesuma Wardhani, Farid Dhiya Ul Arif, Nashrul Hakiem, I. Shofi\",\"doi\":\"10.15408/jti.v17i1.38651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to compare the performance of three classification algorithms, namely Random Forest, XGBoost, and LightGBM, in classifying emotions in Reddit comments. Emotion classification in Reddit comments is a complex classification problem due to its numerous variations and ambiguities. This research utilizes the GoEmotions Fine-Grained dataset, filtered down to 7,325 Reddit comments with 5 different basic emotion labels. In this study, data preprocessing steps, feature extraction using CountVectorizer and TF-IDF, and hyperparameter tuning using GridSearchCV for each algorithm are conducted. Subsequently, model evaluation is performed using Cross-Validation and confusion matrix. The results of the study indicate that Random Forest outperforms the XGBoost and LightGBM algorithm with an accuracy of 75.38% compared to XGBoost with 69.05% accuracy and LightGBM with 66.63% accuracy.\",\"PeriodicalId\":506287,\"journal\":{\"name\":\"JURNAL TEKNIK INFORMATIKA\",\"volume\":\"32 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JURNAL TEKNIK INFORMATIKA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15408/jti.v17i1.38651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL TEKNIK INFORMATIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jti.v17i1.38651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在比较随机森林、XGBoost 和 LightGBM 这三种分类算法在 Reddit 评论中的情感分类性能。Reddit 评论中的情绪分类是一个复杂的分类问题,因为它存在许多变化和模糊性。本研究利用 GoEmotions 精细数据集,筛选出 7,325 条带有 5 种不同基本情感标签的 Reddit 评论。在这项研究中,对每种算法都进行了数据预处理步骤、使用 CountVectorizer 和 TF-IDF 进行特征提取以及使用 GridSearchCV 进行超参数调整。随后,使用交叉验证和混淆矩阵对模型进行评估。研究结果表明,随机森林的准确率为 75.38%,优于 XGBoost 和 LightGBM 算法,而 XGBoost 的准确率为 69.05%,LightGBM 的准确率为 66.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments
This research aims to compare the performance of three classification algorithms, namely Random Forest, XGBoost, and LightGBM, in classifying emotions in Reddit comments. Emotion classification in Reddit comments is a complex classification problem due to its numerous variations and ambiguities. This research utilizes the GoEmotions Fine-Grained dataset, filtered down to 7,325 Reddit comments with 5 different basic emotion labels. In this study, data preprocessing steps, feature extraction using CountVectorizer and TF-IDF, and hyperparameter tuning using GridSearchCV for each algorithm are conducted. Subsequently, model evaluation is performed using Cross-Validation and confusion matrix. The results of the study indicate that Random Forest outperforms the XGBoost and LightGBM algorithm with an accuracy of 75.38% compared to XGBoost with 69.05% accuracy and LightGBM with 66.63% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信