{"title":"高能效、高吞吐量的移动无线传感器网络:深度强化学习方法","authors":"N. Alsalmi, K. Navaie, H. Rahmani","doi":"10.1049/ntw2.12126","DOIUrl":null,"url":null,"abstract":"The efficient development of Mobile Wireless Sensor Networks (MWSNs) relies heavily on optimizing two key parameters: Throughput and Energy Consumption. The proposed work investigates network connectivity issues with MWSN and proposes two routing algorithms, namely Self‐Organising Maps based‐Optimised Link State Routing (SOM‐OLSR) and Deep Reinforcement Learning based‐Optimised Link State Routing (DRL‐OLSR) for MWSNs. The primary objective of the proposed algorithms is to achieve energy‐efficient routing while maximizing throughput. The proposed algorithms are evaluated through simulations by considering various performance metrics, including connection probability (CP), end‐to‐end delay, overhead, network throughput, and energy consumption. The simulation analysis is discussed under three scenarios. The first scenario undertakes ‘no optimisation’, the second considers SOM‐OLSR, and the third undertakes DRL‐OLSR. A comparison between DRL‐OLSR and SOM‐OLSR reveals that the former surpasses the latter in terms of low latency and prolonged network lifetime. Specifically, DRL‐OLSR demonstrates a 47% increase in throughput, a 67% reduction in energy consumption, and a CP three times higher than SOM‐OLSR. Furthermore, when contrasted with the ‘no optimisation’ scenario, DRL‐OLSR achieves a remarkable 69.7% higher throughput and nearly 89% lower energy consumption. These findings highlight the effectiveness of the DRL‐OLSR approach in wireless sensor networks.","PeriodicalId":46240,"journal":{"name":"IET Networks","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and throughput efficient mobile wireless sensor networks: A deep reinforcement learning approach\",\"authors\":\"N. Alsalmi, K. Navaie, H. Rahmani\",\"doi\":\"10.1049/ntw2.12126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient development of Mobile Wireless Sensor Networks (MWSNs) relies heavily on optimizing two key parameters: Throughput and Energy Consumption. The proposed work investigates network connectivity issues with MWSN and proposes two routing algorithms, namely Self‐Organising Maps based‐Optimised Link State Routing (SOM‐OLSR) and Deep Reinforcement Learning based‐Optimised Link State Routing (DRL‐OLSR) for MWSNs. The primary objective of the proposed algorithms is to achieve energy‐efficient routing while maximizing throughput. The proposed algorithms are evaluated through simulations by considering various performance metrics, including connection probability (CP), end‐to‐end delay, overhead, network throughput, and energy consumption. The simulation analysis is discussed under three scenarios. The first scenario undertakes ‘no optimisation’, the second considers SOM‐OLSR, and the third undertakes DRL‐OLSR. A comparison between DRL‐OLSR and SOM‐OLSR reveals that the former surpasses the latter in terms of low latency and prolonged network lifetime. Specifically, DRL‐OLSR demonstrates a 47% increase in throughput, a 67% reduction in energy consumption, and a CP three times higher than SOM‐OLSR. Furthermore, when contrasted with the ‘no optimisation’ scenario, DRL‐OLSR achieves a remarkable 69.7% higher throughput and nearly 89% lower energy consumption. These findings highlight the effectiveness of the DRL‐OLSR approach in wireless sensor networks.\",\"PeriodicalId\":46240,\"journal\":{\"name\":\"IET Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ntw2.12126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ntw2.12126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Energy and throughput efficient mobile wireless sensor networks: A deep reinforcement learning approach
The efficient development of Mobile Wireless Sensor Networks (MWSNs) relies heavily on optimizing two key parameters: Throughput and Energy Consumption. The proposed work investigates network connectivity issues with MWSN and proposes two routing algorithms, namely Self‐Organising Maps based‐Optimised Link State Routing (SOM‐OLSR) and Deep Reinforcement Learning based‐Optimised Link State Routing (DRL‐OLSR) for MWSNs. The primary objective of the proposed algorithms is to achieve energy‐efficient routing while maximizing throughput. The proposed algorithms are evaluated through simulations by considering various performance metrics, including connection probability (CP), end‐to‐end delay, overhead, network throughput, and energy consumption. The simulation analysis is discussed under three scenarios. The first scenario undertakes ‘no optimisation’, the second considers SOM‐OLSR, and the third undertakes DRL‐OLSR. A comparison between DRL‐OLSR and SOM‐OLSR reveals that the former surpasses the latter in terms of low latency and prolonged network lifetime. Specifically, DRL‐OLSR demonstrates a 47% increase in throughput, a 67% reduction in energy consumption, and a CP three times higher than SOM‐OLSR. Furthermore, when contrasted with the ‘no optimisation’ scenario, DRL‐OLSR achieves a remarkable 69.7% higher throughput and nearly 89% lower energy consumption. These findings highlight the effectiveness of the DRL‐OLSR approach in wireless sensor networks.
IET NetworksCOMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.00
自引率
0.00%
发文量
41
审稿时长
33 weeks
期刊介绍:
IET Networks covers the fundamental developments and advancing methodologies to achieve higher performance, optimized and dependable future networks. IET Networks is particularly interested in new ideas and superior solutions to the known and arising technological development bottlenecks at all levels of networking such as topologies, protocols, routing, relaying and resource-allocation for more efficient and more reliable provision of network services. Topics include, but are not limited to: Network Architecture, Design and Planning, Network Protocol, Software, Analysis, Simulation and Experiment, Network Technologies, Applications and Services, Network Security, Operation and Management.