N. Nieto-Marín, C. C. Nieto-Marín, I. Nieto-Marín, J. A. Nieto
{"title":"遗传密码中隐藏的双重数学对称性","authors":"N. Nieto-Marín, C. C. Nieto-Marín, I. Nieto-Marín, J. A. Nieto","doi":"10.3389/fams.2024.1376010","DOIUrl":null,"url":null,"abstract":"We describe the genetic code in terms of numbers that help us to find several dual symmetries. Our formulation can even be rewritten regarding the up-down and right-left dual concepts. We argue that our work may bring many topological tools to studying the DNA molecule, including the Grassmann-Plücker coordinates, which are important in mathematical and physical contexts.","PeriodicalId":507585,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":"84 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hidden dual mathematical symmetry in the genetic code\",\"authors\":\"N. Nieto-Marín, C. C. Nieto-Marín, I. Nieto-Marín, J. A. Nieto\",\"doi\":\"10.3389/fams.2024.1376010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the genetic code in terms of numbers that help us to find several dual symmetries. Our formulation can even be rewritten regarding the up-down and right-left dual concepts. We argue that our work may bring many topological tools to studying the DNA molecule, including the Grassmann-Plücker coordinates, which are important in mathematical and physical contexts.\",\"PeriodicalId\":507585,\"journal\":{\"name\":\"Frontiers in Applied Mathematics and Statistics\",\"volume\":\"84 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fams.2024.1376010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2024.1376010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们用数字来描述遗传密码,这有助于我们找到几种对偶对称性。我们的表述甚至可以根据上下和左右对偶概念进行改写。我们认为,我们的工作可以为研究 DNA 分子带来许多拓扑学工具,包括格拉斯曼-普吕克坐标,这在数学和物理方面都很重要。
Hidden dual mathematical symmetry in the genetic code
We describe the genetic code in terms of numbers that help us to find several dual symmetries. Our formulation can even be rewritten regarding the up-down and right-left dual concepts. We argue that our work may bring many topological tools to studying the DNA molecule, including the Grassmann-Plücker coordinates, which are important in mathematical and physical contexts.