关于一类具有奇异边界数据的椭圆问题的频率定位方法

Lucas C. F. Ferreira, Wender S. Lagoin
{"title":"关于一类具有奇异边界数据的椭圆问题的频率定位方法","authors":"Lucas C. F. Ferreira, Wender S. Lagoin","doi":"10.1017/prm.2024.61","DOIUrl":null,"url":null,"abstract":"We consider a class of nonhomogeneous elliptic equations in the half-space with critical singular boundary potentials and nonlinear fractional derivative terms. The forcing terms are considered on the boundary and can be taken as singular measure. Employing a functional setting and approach based on localization-in-frequency and Littlewood–Paley decomposition, we obtain results on solvability, regularity, and symmetry of solutions.","PeriodicalId":517305,"journal":{"name":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a localization-in-frequency approach for a class of elliptic problems with singular boundary data\",\"authors\":\"Lucas C. F. Ferreira, Wender S. Lagoin\",\"doi\":\"10.1017/prm.2024.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of nonhomogeneous elliptic equations in the half-space with critical singular boundary potentials and nonlinear fractional derivative terms. The forcing terms are considered on the boundary and can be taken as singular measure. Employing a functional setting and approach based on localization-in-frequency and Littlewood–Paley decomposition, we obtain results on solvability, regularity, and symmetry of solutions.\",\"PeriodicalId\":517305,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh: Section A Mathematics\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh: Section A Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/prm.2024.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了半空间中一类具有临界奇异边界势和非线性分数导数项的非均质椭圆方程。强迫项是在边界上考虑的,可以作为奇异度量。利用基于频率局部化和 Littlewood-Paley 分解的函数设置和方法,我们获得了关于解的可解性、正则性和对称性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a localization-in-frequency approach for a class of elliptic problems with singular boundary data
We consider a class of nonhomogeneous elliptic equations in the half-space with critical singular boundary potentials and nonlinear fractional derivative terms. The forcing terms are considered on the boundary and can be taken as singular measure. Employing a functional setting and approach based on localization-in-frequency and Littlewood–Paley decomposition, we obtain results on solvability, regularity, and symmetry of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信