Edward Jordy Ticlavilca-Inche, Maria Isabel Moreno-Lozano, Pedro Castañeda, Sandra Wong-Durand, Alejandra Oñate-Andino
{"title":"基于卷积神经网络的移动应用程序,用于在眼科医疗中心的眼球前段图像中检测翼状胬肉","authors":"Edward Jordy Ticlavilca-Inche, Maria Isabel Moreno-Lozano, Pedro Castañeda, Sandra Wong-Durand, Alejandra Oñate-Andino","doi":"10.3991/ijoe.v20i08.48421","DOIUrl":null,"url":null,"abstract":"This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNet201) were used for the analysis, with ResNext50 standing out for its high accuracy and diagnostic efficiency. The research, focused on applications for ophthalmological medical centers in Lima, Peru, explains the process of development and integration of the ResNext50 model into a mobile application. The results indicate the high effectiveness of the system, highlighting its high precision, recall, and specificity, which exceed 85%, thus showing its potential as an advanced diagnostic tool in ophthalmology. This system represents a significant tool in ophthalmology, especially for areas with limited access to specialists, offering a rapid and reliable diagnosis of Pterygium. The study also addresses the technical challenges and clinical implications of implementing this technology in a real-world context.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":"137 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers\",\"authors\":\"Edward Jordy Ticlavilca-Inche, Maria Isabel Moreno-Lozano, Pedro Castañeda, Sandra Wong-Durand, Alejandra Oñate-Andino\",\"doi\":\"10.3991/ijoe.v20i08.48421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNet201) were used for the analysis, with ResNext50 standing out for its high accuracy and diagnostic efficiency. The research, focused on applications for ophthalmological medical centers in Lima, Peru, explains the process of development and integration of the ResNext50 model into a mobile application. The results indicate the high effectiveness of the system, highlighting its high precision, recall, and specificity, which exceed 85%, thus showing its potential as an advanced diagnostic tool in ophthalmology. This system represents a significant tool in ophthalmology, especially for areas with limited access to specialists, offering a rapid and reliable diagnosis of Pterygium. The study also addresses the technical challenges and clinical implications of implementing this technology in a real-world context.\",\"PeriodicalId\":507997,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering (iJOE)\",\"volume\":\"137 30\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering (iJOE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v20i08.48421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i08.48421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers
This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNet201) were used for the analysis, with ResNext50 standing out for its high accuracy and diagnostic efficiency. The research, focused on applications for ophthalmological medical centers in Lima, Peru, explains the process of development and integration of the ResNext50 model into a mobile application. The results indicate the high effectiveness of the system, highlighting its high precision, recall, and specificity, which exceed 85%, thus showing its potential as an advanced diagnostic tool in ophthalmology. This system represents a significant tool in ophthalmology, especially for areas with limited access to specialists, offering a rapid and reliable diagnosis of Pterygium. The study also addresses the technical challenges and clinical implications of implementing this technology in a real-world context.