双面 REBCO 胶带的电流共享

Shengchen Xue, Yi Li, Lingfeng Zhu, Bhabesh Sarangi, Jithin sai sandra, Jian Rong, Nghia Mai, Siwei Chen, Atik Chavda, Umesh Sambangi, Jithin Peram, Prakash Parthiban, V. Selvamanickam
{"title":"双面 REBCO 胶带的电流共享","authors":"Shengchen Xue, Yi Li, Lingfeng Zhu, Bhabesh Sarangi, Jithin sai sandra, Jian Rong, Nghia Mai, Siwei Chen, Atik Chavda, Umesh Sambangi, Jithin Peram, Prakash Parthiban, V. Selvamanickam","doi":"10.1088/1361-6668/ad4e76","DOIUrl":null,"url":null,"abstract":"\n Current sharing between RE-Ba-Cu-O (REBCO, RE=rare earth) tapes within a high-temperature superconducting (HTS) coil or cable is important to avoid damage from uncontrolled quench of superconducting devices operating at high currents. Current sharing between REBCO tapes is found to be limited by contact resistivity between the adjacent tapes, which is about 20x higher in the REBCO-facing-substrate (face-to-back) configuration that is commonly used in devices compared to a REBCO-facing-REBCO (face-to-face) configuration. Double-sided REBCO tapes always offer face-to-face contacts between adjacent tapes, and this benefit for excellent current sharing has been validated in experiments wherein an artificial defect is introduced in one tape in a 2-ply tape stack. Additionally, current sharing between the two REBCO layers within one double-sided REBCO tape has also been investigated. Slotting of the double-sided tapes, wherein slots through the insulating buffer stack are filled with a conductive material, has been found to significantly enhance the current sharing from one REBCO layer to the opposite layer.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current sharing in double-sided REBCO tapes\",\"authors\":\"Shengchen Xue, Yi Li, Lingfeng Zhu, Bhabesh Sarangi, Jithin sai sandra, Jian Rong, Nghia Mai, Siwei Chen, Atik Chavda, Umesh Sambangi, Jithin Peram, Prakash Parthiban, V. Selvamanickam\",\"doi\":\"10.1088/1361-6668/ad4e76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Current sharing between RE-Ba-Cu-O (REBCO, RE=rare earth) tapes within a high-temperature superconducting (HTS) coil or cable is important to avoid damage from uncontrolled quench of superconducting devices operating at high currents. Current sharing between REBCO tapes is found to be limited by contact resistivity between the adjacent tapes, which is about 20x higher in the REBCO-facing-substrate (face-to-back) configuration that is commonly used in devices compared to a REBCO-facing-REBCO (face-to-face) configuration. Double-sided REBCO tapes always offer face-to-face contacts between adjacent tapes, and this benefit for excellent current sharing has been validated in experiments wherein an artificial defect is introduced in one tape in a 2-ply tape stack. Additionally, current sharing between the two REBCO layers within one double-sided REBCO tape has also been investigated. Slotting of the double-sided tapes, wherein slots through the insulating buffer stack are filled with a conductive material, has been found to significantly enhance the current sharing from one REBCO layer to the opposite layer.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad4e76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad4e76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高温超导(HTS)线圈或电缆中的 RE-Ba-Cu-O(REBCO,RE=稀土)磁带之间的电流共享对于避免在大电流下工作的超导设备因失控淬火而损坏非常重要。研究发现,REBCO 磁带之间的电流分担受限于相邻磁带之间的接触电阻率,与 REBCO-facing-REBCO(面对面)配置相比,设备中常用的 REBCO-facing-REBCO(面对面)配置的接触电阻率高出约 20 倍。双面 REBCO 磁带总是在相邻磁带之间提供面对面的接触,这种出色的电流共享优势已在实验中得到验证,实验中在双层磁带堆栈中的一条磁带上引入了人工缺陷。此外,还研究了双面 REBCO 磁带中两个 REBCO 层之间的电流共享。在双面胶带上开槽,用导电材料填满绝缘缓冲层上的槽,可显著提高从一个 REBCO 层到另一个 REBCO 层的电流共享。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current sharing in double-sided REBCO tapes
Current sharing between RE-Ba-Cu-O (REBCO, RE=rare earth) tapes within a high-temperature superconducting (HTS) coil or cable is important to avoid damage from uncontrolled quench of superconducting devices operating at high currents. Current sharing between REBCO tapes is found to be limited by contact resistivity between the adjacent tapes, which is about 20x higher in the REBCO-facing-substrate (face-to-back) configuration that is commonly used in devices compared to a REBCO-facing-REBCO (face-to-face) configuration. Double-sided REBCO tapes always offer face-to-face contacts between adjacent tapes, and this benefit for excellent current sharing has been validated in experiments wherein an artificial defect is introduced in one tape in a 2-ply tape stack. Additionally, current sharing between the two REBCO layers within one double-sided REBCO tape has also been investigated. Slotting of the double-sided tapes, wherein slots through the insulating buffer stack are filled with a conductive material, has been found to significantly enhance the current sharing from one REBCO layer to the opposite layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信