利用神经网络模型优化铝合金 AA1100 的微摩擦点焊 (mFSSW)

Tri Haryanto Soleh Atmaja, L. A. Safitri, P. Rupajati, A. Baskoro
{"title":"利用神经网络模型优化铝合金 AA1100 的微摩擦点焊 (mFSSW)","authors":"Tri Haryanto Soleh Atmaja, L. A. Safitri, P. Rupajati, A. Baskoro","doi":"10.4028/p-bbosi6","DOIUrl":null,"url":null,"abstract":"This study explores the optimization of Micro Friction Stir Spot Welding (mFSSW) by investigating the influence of tool profiles on welding outcomes, using aluminum alloy AA1100 with a 0.42 mm thickness as the specimen material. Monitoring temperature and RPM during welding with thermocouples and tachometers, mechanical properties are assessed through tensile shear tests, microhardness measurements, and macrostructural observations. The findings serve as the basis for developing Neural Network models using Rapidminer software, marking a transformative development that positions Neural Networks as potent tools for optimizing welding processes, potentially leading to achieving optimal weld quality. The investigation also delves into three welding tool configurations – the two-stage pin, one-stage pin, and pinless mFSSW probes – highlighting their distinct impacts on tensile shear test values and overall welding quality. Notably, the two-stage pin configuration emphasizes the significance of larger pin diameters and controlled heat generation for enhanced weld strength, while the one-stage pin configuration underscores the pivotal role of pin diameter and elevated temperatures in improving weld quality. The pinless mFSSW probe configuration, on the other hand, emphasizes the importance of shoulder diameter and temperature control for superior tensile shear test results. Leveraging Neural Network modeling for optimization, this study advances our understanding of parameter interactions and underscores the efficacy of Neural Networks in achieving superior tensile shear test values and welding quality in mFSSW, offering valuable insights for future endeavors in the field..","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Micro Friction Stir Spot Welding (mFSSW) of Aluminum Alloy AA1100 Using Neural Network Model\",\"authors\":\"Tri Haryanto Soleh Atmaja, L. A. Safitri, P. Rupajati, A. Baskoro\",\"doi\":\"10.4028/p-bbosi6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the optimization of Micro Friction Stir Spot Welding (mFSSW) by investigating the influence of tool profiles on welding outcomes, using aluminum alloy AA1100 with a 0.42 mm thickness as the specimen material. Monitoring temperature and RPM during welding with thermocouples and tachometers, mechanical properties are assessed through tensile shear tests, microhardness measurements, and macrostructural observations. The findings serve as the basis for developing Neural Network models using Rapidminer software, marking a transformative development that positions Neural Networks as potent tools for optimizing welding processes, potentially leading to achieving optimal weld quality. The investigation also delves into three welding tool configurations – the two-stage pin, one-stage pin, and pinless mFSSW probes – highlighting their distinct impacts on tensile shear test values and overall welding quality. Notably, the two-stage pin configuration emphasizes the significance of larger pin diameters and controlled heat generation for enhanced weld strength, while the one-stage pin configuration underscores the pivotal role of pin diameter and elevated temperatures in improving weld quality. The pinless mFSSW probe configuration, on the other hand, emphasizes the importance of shoulder diameter and temperature control for superior tensile shear test results. Leveraging Neural Network modeling for optimization, this study advances our understanding of parameter interactions and underscores the efficacy of Neural Networks in achieving superior tensile shear test values and welding quality in mFSSW, offering valuable insights for future endeavors in the field..\",\"PeriodicalId\":18262,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-bbosi6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-bbosi6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究以厚度为 0.42 毫米的铝合金 AA1100 为试样材料,通过研究工具轮廓对焊接结果的影响,探索微摩擦搅拌点焊 (mFSSW) 的优化方法。使用热电偶和转速计监测焊接过程中的温度和转速,通过拉伸剪切试验、显微硬度测量和宏观结构观察评估机械性能。研究结果是使用 Rapidminer 软件开发神经网络模型的基础,标志着将神经网络定位为优化焊接过程的有效工具的变革性发展,有可能实现最佳焊接质量。调查还深入研究了三种焊接工具配置--两级销钉、一级销钉和无销钉 mFSSW 探头--突出了它们对拉伸剪切测试值和整体焊接质量的不同影响。值得注意的是,两级销钉结构强调了较大销钉直径和可控发热对提高焊接强度的重要性,而一级销钉结构则强调了销钉直径和高温对提高焊接质量的关键作用。另一方面,无针 mFSSW 探头配置强调了肩部直径和温度控制对获得优异拉伸剪切测试结果的重要性。这项研究利用神经网络建模进行优化,加深了我们对参数相互作用的理解,并强调了神经网络在实现优异的拉伸剪切测试值和 mFSSW 焊接质量方面的功效,为该领域未来的工作提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Micro Friction Stir Spot Welding (mFSSW) of Aluminum Alloy AA1100 Using Neural Network Model
This study explores the optimization of Micro Friction Stir Spot Welding (mFSSW) by investigating the influence of tool profiles on welding outcomes, using aluminum alloy AA1100 with a 0.42 mm thickness as the specimen material. Monitoring temperature and RPM during welding with thermocouples and tachometers, mechanical properties are assessed through tensile shear tests, microhardness measurements, and macrostructural observations. The findings serve as the basis for developing Neural Network models using Rapidminer software, marking a transformative development that positions Neural Networks as potent tools for optimizing welding processes, potentially leading to achieving optimal weld quality. The investigation also delves into three welding tool configurations – the two-stage pin, one-stage pin, and pinless mFSSW probes – highlighting their distinct impacts on tensile shear test values and overall welding quality. Notably, the two-stage pin configuration emphasizes the significance of larger pin diameters and controlled heat generation for enhanced weld strength, while the one-stage pin configuration underscores the pivotal role of pin diameter and elevated temperatures in improving weld quality. The pinless mFSSW probe configuration, on the other hand, emphasizes the importance of shoulder diameter and temperature control for superior tensile shear test results. Leveraging Neural Network modeling for optimization, this study advances our understanding of parameter interactions and underscores the efficacy of Neural Networks in achieving superior tensile shear test values and welding quality in mFSSW, offering valuable insights for future endeavors in the field..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信