Ronghua Pang, Yang Li, Chen Li, Pengfei Zhang, Zhuang Guo, Sizhe Zhao, Han Yu, Li Wang, Chenxi Zhu, Shuangyu Wang, Kairui Tai, Qinwei Zhang, Yuanyun Wen, Rui Li
{"title":"通过实验研究揭示水星表面纳米铁粒子的形成和生长过程","authors":"Ronghua Pang, Yang Li, Chen Li, Pengfei Zhang, Zhuang Guo, Sizhe Zhao, Han Yu, Li Wang, Chenxi Zhu, Shuangyu Wang, Kairui Tai, Qinwei Zhang, Yuanyun Wen, Rui Li","doi":"10.1007/s11631-024-00699-x","DOIUrl":null,"url":null,"abstract":"<div><p>Space weathering is a primary factor in altering the composition and spectral characteristics of surface materials on airless planets. However, current research on space weathering focuses mainly on the Moon and certain types of asteroids. In particular, the impacts of meteoroids and micrometeoroids, radiation from solar wind/solar flares/cosmic rays, and thermal fatigue due to temperature variations are being studied. Space weathering produces various transformation products such as melted glass, amorphous layers, iron particles, vesicles, and solar wind water. These in turn lead to soil maturation, changes in visible and near-infrared reflectance spectra (weakening of characteristic absorption peaks, decreased reflectance, increased near-infrared slope), and alterations in magnetism (related to small iron particles), collectively termed the “lunar model” of space weathering transformation. Compared to the Moon and asteroids, Mercury has unique spatial environmental characteristics, including more intense meteoroid impacts and solar thermal radiation, as well as a weaker particle radiation environment due to the global distribution of its magnetic field. Therefore, the lunar model of space weathering may not apply to Mercury. Previous studies have extensively explored the effects of micrometeoroid impacts. Hence, this work focuses on the effects of solar-wind particle radiation in global magnetic-field distribution and on the weathering transformation of surface materials on Mercury under prolonged intense solar irradiation. Through the utilization of high-valence state, heavy ion implantation, and vacuum heating simulation experiments, this paper primarily investigates the weathering transformation characteristics of the major mineral components such as anorthite, pyroxene, and olivine on Mercury's surface and compares them to the weathering transformation model of the Moon. The experimental results indicate that ion implantation at room temperature is insufficient to generate np-Fe<sup>0</sup> directly but can facilitate its formation, while prolonged exposure to solar thermal radiation on Mercury's surface can lead directly to the formation of np-Fe<sup>0</sup>. Therefore, intense solar thermal radiation is a crucial component of the unique space weathering transformation process on Mercury's surface.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 4","pages":"774 - 784"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation and growth of nanophase iron particles on the surface of Mercury revealed by experimental study\",\"authors\":\"Ronghua Pang, Yang Li, Chen Li, Pengfei Zhang, Zhuang Guo, Sizhe Zhao, Han Yu, Li Wang, Chenxi Zhu, Shuangyu Wang, Kairui Tai, Qinwei Zhang, Yuanyun Wen, Rui Li\",\"doi\":\"10.1007/s11631-024-00699-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Space weathering is a primary factor in altering the composition and spectral characteristics of surface materials on airless planets. However, current research on space weathering focuses mainly on the Moon and certain types of asteroids. In particular, the impacts of meteoroids and micrometeoroids, radiation from solar wind/solar flares/cosmic rays, and thermal fatigue due to temperature variations are being studied. Space weathering produces various transformation products such as melted glass, amorphous layers, iron particles, vesicles, and solar wind water. These in turn lead to soil maturation, changes in visible and near-infrared reflectance spectra (weakening of characteristic absorption peaks, decreased reflectance, increased near-infrared slope), and alterations in magnetism (related to small iron particles), collectively termed the “lunar model” of space weathering transformation. Compared to the Moon and asteroids, Mercury has unique spatial environmental characteristics, including more intense meteoroid impacts and solar thermal radiation, as well as a weaker particle radiation environment due to the global distribution of its magnetic field. Therefore, the lunar model of space weathering may not apply to Mercury. Previous studies have extensively explored the effects of micrometeoroid impacts. Hence, this work focuses on the effects of solar-wind particle radiation in global magnetic-field distribution and on the weathering transformation of surface materials on Mercury under prolonged intense solar irradiation. Through the utilization of high-valence state, heavy ion implantation, and vacuum heating simulation experiments, this paper primarily investigates the weathering transformation characteristics of the major mineral components such as anorthite, pyroxene, and olivine on Mercury's surface and compares them to the weathering transformation model of the Moon. The experimental results indicate that ion implantation at room temperature is insufficient to generate np-Fe<sup>0</sup> directly but can facilitate its formation, while prolonged exposure to solar thermal radiation on Mercury's surface can lead directly to the formation of np-Fe<sup>0</sup>. Therefore, intense solar thermal radiation is a crucial component of the unique space weathering transformation process on Mercury's surface.</p></div>\",\"PeriodicalId\":7151,\"journal\":{\"name\":\"Acta Geochimica\",\"volume\":\"43 4\",\"pages\":\"774 - 784\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geochimica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11631-024-00699-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geochimica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11631-024-00699-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Formation and growth of nanophase iron particles on the surface of Mercury revealed by experimental study
Space weathering is a primary factor in altering the composition and spectral characteristics of surface materials on airless planets. However, current research on space weathering focuses mainly on the Moon and certain types of asteroids. In particular, the impacts of meteoroids and micrometeoroids, radiation from solar wind/solar flares/cosmic rays, and thermal fatigue due to temperature variations are being studied. Space weathering produces various transformation products such as melted glass, amorphous layers, iron particles, vesicles, and solar wind water. These in turn lead to soil maturation, changes in visible and near-infrared reflectance spectra (weakening of characteristic absorption peaks, decreased reflectance, increased near-infrared slope), and alterations in magnetism (related to small iron particles), collectively termed the “lunar model” of space weathering transformation. Compared to the Moon and asteroids, Mercury has unique spatial environmental characteristics, including more intense meteoroid impacts and solar thermal radiation, as well as a weaker particle radiation environment due to the global distribution of its magnetic field. Therefore, the lunar model of space weathering may not apply to Mercury. Previous studies have extensively explored the effects of micrometeoroid impacts. Hence, this work focuses on the effects of solar-wind particle radiation in global magnetic-field distribution and on the weathering transformation of surface materials on Mercury under prolonged intense solar irradiation. Through the utilization of high-valence state, heavy ion implantation, and vacuum heating simulation experiments, this paper primarily investigates the weathering transformation characteristics of the major mineral components such as anorthite, pyroxene, and olivine on Mercury's surface and compares them to the weathering transformation model of the Moon. The experimental results indicate that ion implantation at room temperature is insufficient to generate np-Fe0 directly but can facilitate its formation, while prolonged exposure to solar thermal radiation on Mercury's surface can lead directly to the formation of np-Fe0. Therefore, intense solar thermal radiation is a crucial component of the unique space weathering transformation process on Mercury's surface.
期刊介绍:
Acta Geochimica serves as the international forum for essential research on geochemistry, the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth‘s crust, its oceans and the entire Solar System, as well as a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. The journal focuses on, but is not limited to the following aspects:
• Cosmochemistry
• Mantle Geochemistry
• Ore-deposit Geochemistry
• Organic Geochemistry
• Environmental Geochemistry
• Computational Geochemistry
• Isotope Geochemistry
• NanoGeochemistry
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Acta Geochimica publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of geochemistry.