Yuanzhi Chen, Zhiren Zeng, Ziyou Chen, Na Yuan, Xinya Ye, Chengcheng Zhang, N. Xia, Wenxin Luo
{"title":"抗体多样性的新机制:含有 LAIR1 和 LILRB1 细胞外结构域的天然抗体的形成","authors":"Yuanzhi Chen, Zhiren Zeng, Ziyou Chen, Na Yuan, Xinya Ye, Chengcheng Zhang, N. Xia, Wenxin Luo","doi":"10.1093/abt/tbae008","DOIUrl":null,"url":null,"abstract":"\n The recent discovery of public antibodies targeting Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), which contain extracellular immunoglobulin-like domains from LAIR1 or LILRB1, constitutes a significant step forward in comprehending the reactivity of the Plasmodium parasite. These antibodies arise from unique B cell clones and demonstrate extensive cross-reactivity through their interaction with Plasmodium falciparum RIFINs. LAIR1 and LILRBs are specialized type I transmembrane glycoproteins, classified as immune inhibitory receptors, restricted to primates and mainly found on hematopoietic cells. They are instrumental in modulating interactions within the tumor microenvironment and across the immune system, and are increasingly recognized as important in anti-cancer immunotherapy and pathogen defense. The presence of LAIR1/LILRB1-containing antibodies offers new insights into malaria parasite evasion strategies and the immune system’s response. Additionally, the innovative method of integrating extra exons into the antibody switch region is a noteworthy advancement, enriching the strategies for the generation of a varied array of bispecific and multispecific antibodies.","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new mechanism of antibody diversity: formation of the natural antibodies containing LAIR1 and LILRB1 extracellular domains\",\"authors\":\"Yuanzhi Chen, Zhiren Zeng, Ziyou Chen, Na Yuan, Xinya Ye, Chengcheng Zhang, N. Xia, Wenxin Luo\",\"doi\":\"10.1093/abt/tbae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The recent discovery of public antibodies targeting Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), which contain extracellular immunoglobulin-like domains from LAIR1 or LILRB1, constitutes a significant step forward in comprehending the reactivity of the Plasmodium parasite. These antibodies arise from unique B cell clones and demonstrate extensive cross-reactivity through their interaction with Plasmodium falciparum RIFINs. LAIR1 and LILRBs are specialized type I transmembrane glycoproteins, classified as immune inhibitory receptors, restricted to primates and mainly found on hematopoietic cells. They are instrumental in modulating interactions within the tumor microenvironment and across the immune system, and are increasingly recognized as important in anti-cancer immunotherapy and pathogen defense. The presence of LAIR1/LILRB1-containing antibodies offers new insights into malaria parasite evasion strategies and the immune system’s response. Additionally, the innovative method of integrating extra exons into the antibody switch region is a noteworthy advancement, enriching the strategies for the generation of a varied array of bispecific and multispecific antibodies.\",\"PeriodicalId\":36655,\"journal\":{\"name\":\"Antibody Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibody Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/abt/tbae008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbae008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
最近发现了针对恶性疟原虫编码的重复穿插多肽家族(RIFINs)的公共抗体,这些抗体含有来自 LAIR1 或 LILRB1 的细胞外免疫球蛋白样结构域,这是在理解疟原虫反应性方面迈出的重要一步。这些抗体来自于独特的 B 细胞克隆,并通过与恶性疟原虫 RIFINs 的相互作用表现出广泛的交叉反应性。LAIR1 和 LILRBs 是专门的 I 型跨膜糖蛋白,被归类为免疫抑制受体,仅限于灵长类动物,主要存在于造血细胞上。它们在调节肿瘤微环境和整个免疫系统的相互作用方面起着重要作用,在抗癌免疫疗法和病原体防御中的重要性日益得到认可。含有 LAIR1/LILRB1 的抗体的存在为我们提供了关于疟原虫逃避策略和免疫系统反应的新见解。此外,将额外的外显子整合到抗体开关区的创新方法也是一个值得注意的进步,它丰富了生成各种双特异性和多特异性抗体的策略。
A new mechanism of antibody diversity: formation of the natural antibodies containing LAIR1 and LILRB1 extracellular domains
The recent discovery of public antibodies targeting Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), which contain extracellular immunoglobulin-like domains from LAIR1 or LILRB1, constitutes a significant step forward in comprehending the reactivity of the Plasmodium parasite. These antibodies arise from unique B cell clones and demonstrate extensive cross-reactivity through their interaction with Plasmodium falciparum RIFINs. LAIR1 and LILRBs are specialized type I transmembrane glycoproteins, classified as immune inhibitory receptors, restricted to primates and mainly found on hematopoietic cells. They are instrumental in modulating interactions within the tumor microenvironment and across the immune system, and are increasingly recognized as important in anti-cancer immunotherapy and pathogen defense. The presence of LAIR1/LILRB1-containing antibodies offers new insights into malaria parasite evasion strategies and the immune system’s response. Additionally, the innovative method of integrating extra exons into the antibody switch region is a noteworthy advancement, enriching the strategies for the generation of a varied array of bispecific and multispecific antibodies.