优化 FDM 加工参数对生产高跟鞋用 ABS 制品抗压性能的影响

IF 3.3 Q2 ENGINEERING, MANUFACTURING
Suzana Kutnjak-Mravlinčić, Damir Godec, Ana Pilipović, Ana Sutlović
{"title":"优化 FDM 加工参数对生产高跟鞋用 ABS 制品抗压性能的影响","authors":"Suzana Kutnjak-Mravlinčić, Damir Godec, Ana Pilipović, Ana Sutlović","doi":"10.3390/jmmp8030106","DOIUrl":null,"url":null,"abstract":"The influence of 3D printing parameters on compressive properties is an important factor in the application of additive manufacturing processes for products subjected to compressive loads in use. In this study, the compressive strength and compressive modulus of acrylonitrile/butadiene/styrene (ABS) test specimens fabricated using the fused deposition modeling (FDM) process were investigated with the aim of producing products of high-heeled shoes for women. The experimental part of the study includes a central composite experimental design to optimize the main 3D printing parameters (layer thickness, infill density, and extrusion temperature) and the infill geometry (honeycomb and linear at a 45° angle—L45) to achieve maximum printing properties of the 3D-printed products. The results show that the infill density has the greatest influence on the printing properties, followed by the layer thickness and, finally, the extrusion temperature as the least influential factor. The linear infill at a 45° angle resulted in higher compressive strength and lower compressive modulus values compared to the honeycomb infill. By optimizing the results, the maximum compressive strength (that of L45 is 41 N/mm2 and that of honeycomb 35 N/mm2) and modulus (that of L45 is 918 N/mm2 and that of honeycomb is 868 N/mm2) for both types of infill is obtained at a layer thickness of 0.1 mm and infill density of 40%, while the temperature for L45 can be in the range of 209 °C to 254 °C, but for the honeycomb infill, the processing temperature is 255 °C. Additionally, the study highlights the potential for sustainable manufacturing practices and the integration of advanced 3D printing technologies to enhance the efficiency and eco-friendliness of the production process.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the FDM Processing Parameters on the Compressive Properties of ABS Objects for the Production of High-Heeled Shoes\",\"authors\":\"Suzana Kutnjak-Mravlinčić, Damir Godec, Ana Pilipović, Ana Sutlović\",\"doi\":\"10.3390/jmmp8030106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of 3D printing parameters on compressive properties is an important factor in the application of additive manufacturing processes for products subjected to compressive loads in use. In this study, the compressive strength and compressive modulus of acrylonitrile/butadiene/styrene (ABS) test specimens fabricated using the fused deposition modeling (FDM) process were investigated with the aim of producing products of high-heeled shoes for women. The experimental part of the study includes a central composite experimental design to optimize the main 3D printing parameters (layer thickness, infill density, and extrusion temperature) and the infill geometry (honeycomb and linear at a 45° angle—L45) to achieve maximum printing properties of the 3D-printed products. The results show that the infill density has the greatest influence on the printing properties, followed by the layer thickness and, finally, the extrusion temperature as the least influential factor. The linear infill at a 45° angle resulted in higher compressive strength and lower compressive modulus values compared to the honeycomb infill. By optimizing the results, the maximum compressive strength (that of L45 is 41 N/mm2 and that of honeycomb 35 N/mm2) and modulus (that of L45 is 918 N/mm2 and that of honeycomb is 868 N/mm2) for both types of infill is obtained at a layer thickness of 0.1 mm and infill density of 40%, while the temperature for L45 can be in the range of 209 °C to 254 °C, but for the honeycomb infill, the processing temperature is 255 °C. Additionally, the study highlights the potential for sustainable manufacturing practices and the integration of advanced 3D printing technologies to enhance the efficiency and eco-friendliness of the production process.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp8030106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8030106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

三维打印参数对抗压性能的影响是将增材制造工艺应用于在使用中承受压缩载荷的产品的一个重要因素。在本研究中,以生产女式高跟鞋产品为目的,研究了使用熔融沉积建模(FDM)工艺制作的丙烯腈/丁二烯/苯乙烯(ABS)试样的抗压强度和抗压模量。研究的实验部分包括一个中心复合实验设计,以优化主要的三维打印参数(层厚度、填充密度和挤出温度)和填充几何形状(蜂窝状和线性 45° 角-L45),从而实现三维打印产品的最大打印性能。结果表明,填充密度对打印性能的影响最大,其次是层厚度,最后是挤出温度。与蜂窝状填充物相比,45°角的线性填充物具有更高的抗压强度和更低的抗压模量值。通过优化结果,在层厚为 0.1 毫米、填充密度为 40% 时,两种类型的填充物都能获得最大抗压强度(L45 为 41 牛顿/平方毫米,蜂窝为 35 牛顿/平方毫米)和模量(L45 为 918 牛顿/平方毫米,蜂窝为 868 牛顿/平方毫米),而 L45 的温度范围为 209 °C 至 254 °C,但蜂窝填充物的加工温度为 255 °C。此外,该研究还强调了可持续制造实践和先进三维打印技术的整合潜力,以提高生产过程的效率和生态友好性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of the FDM Processing Parameters on the Compressive Properties of ABS Objects for the Production of High-Heeled Shoes
The influence of 3D printing parameters on compressive properties is an important factor in the application of additive manufacturing processes for products subjected to compressive loads in use. In this study, the compressive strength and compressive modulus of acrylonitrile/butadiene/styrene (ABS) test specimens fabricated using the fused deposition modeling (FDM) process were investigated with the aim of producing products of high-heeled shoes for women. The experimental part of the study includes a central composite experimental design to optimize the main 3D printing parameters (layer thickness, infill density, and extrusion temperature) and the infill geometry (honeycomb and linear at a 45° angle—L45) to achieve maximum printing properties of the 3D-printed products. The results show that the infill density has the greatest influence on the printing properties, followed by the layer thickness and, finally, the extrusion temperature as the least influential factor. The linear infill at a 45° angle resulted in higher compressive strength and lower compressive modulus values compared to the honeycomb infill. By optimizing the results, the maximum compressive strength (that of L45 is 41 N/mm2 and that of honeycomb 35 N/mm2) and modulus (that of L45 is 918 N/mm2 and that of honeycomb is 868 N/mm2) for both types of infill is obtained at a layer thickness of 0.1 mm and infill density of 40%, while the temperature for L45 can be in the range of 209 °C to 254 °C, but for the honeycomb infill, the processing temperature is 255 °C. Additionally, the study highlights the potential for sustainable manufacturing practices and the integration of advanced 3D printing technologies to enhance the efficiency and eco-friendliness of the production process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信