{"title":"拉盖尔超群背景下的谱定理","authors":"H. Mejjaoli, Firdous A. Shah","doi":"10.28919/cpr-pajm/3-13","DOIUrl":null,"url":null,"abstract":"We introduce the two-wavelet multiplier operator in the Laguerre hypergroup setting. Knowing the fact that the study of this operator are both theoretically interesting and practically useful, we investigated several subjects of spectral analysis for the new operator. Firstly, we present a comprehensive analysis of the generalized two-wavelet multiplier operator. Next, we introduce and we study the generalized Landau-PollakSlepian operator. As applications, some problems of the approximation theory and the uncertainty principles are studied. Finally, we give many results on the boundedness and compactness of the Laguerre two-wavelet multipliers on Lpα(K), 1≤p≤∞.","PeriodicalId":503253,"journal":{"name":"Pan-American Journal of Mathematics","volume":"48 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Theorems in the Laguerre Hypergroup Setting\",\"authors\":\"H. Mejjaoli, Firdous A. Shah\",\"doi\":\"10.28919/cpr-pajm/3-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the two-wavelet multiplier operator in the Laguerre hypergroup setting. Knowing the fact that the study of this operator are both theoretically interesting and practically useful, we investigated several subjects of spectral analysis for the new operator. Firstly, we present a comprehensive analysis of the generalized two-wavelet multiplier operator. Next, we introduce and we study the generalized Landau-PollakSlepian operator. As applications, some problems of the approximation theory and the uncertainty principles are studied. Finally, we give many results on the boundedness and compactness of the Laguerre two-wavelet multipliers on Lpα(K), 1≤p≤∞.\",\"PeriodicalId\":503253,\"journal\":{\"name\":\"Pan-American Journal of Mathematics\",\"volume\":\"48 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pan-American Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/cpr-pajm/3-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pan-American Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cpr-pajm/3-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectral Theorems in the Laguerre Hypergroup Setting
We introduce the two-wavelet multiplier operator in the Laguerre hypergroup setting. Knowing the fact that the study of this operator are both theoretically interesting and practically useful, we investigated several subjects of spectral analysis for the new operator. Firstly, we present a comprehensive analysis of the generalized two-wavelet multiplier operator. Next, we introduce and we study the generalized Landau-PollakSlepian operator. As applications, some problems of the approximation theory and the uncertainty principles are studied. Finally, we give many results on the boundedness and compactness of the Laguerre two-wavelet multipliers on Lpα(K), 1≤p≤∞.